Polymer functionalized single walled carbon nanotubes mediated drug delivery of gliotoxin in cancer cells.

During recent years, significant development has been achieved in carbon nanotube conjugated with polymer system for drug delivery system (DDS). In the present study, we have prepared functionalized single walled carbon nanotube conjugated with chitooligosaccharide (f-SWNT-COS) as a Drug Delivery System. In addition, drug Gliotoxin (GTX) and targeting molecules (Lysozyme, p53 and Folic acid) have been incorporated into f-SWNT-COS. f-SWNTs-COS-GTX-p53, f-SWNTs-COS-GTX-lysozyme, f-SWNTs-COS-GTX-FA have been physiochemically characterized for DDS. FT-IR, SEM and TEM analysis confirmed the formation of chemical interaction and polymer coating. FT-IR result clearly confirmed the interaction between f-SWNT and COS. The effective drug release was monitored against cervical cancer (HeLa) cells and Breast Cancer (MCF-7) cells and it was found that all the three drug delivery systems showed significant cytotoxicity. f-SWNTs-COS-GTX-p53 delivery vehicle and its effective cytotoxicity on HeLa cells was further checked with fluorescent activated cell sorter analysis. Our results suggest that the f-SWNTs-COS-GTX-p53 is the most effective delivery vehicle with a controlled release and enhanced cytotoxicity rendered through apoptosis in human cervical cancer (HeLa) cells. These systems can further be used for the delivery of other commercially available anti cancer drugs as well.