Approximating Semidefinite Packing Programs

In this paper we define semidefinite packing programs and describe an algorithm to approximately solve these problems. Semidefinite packing programs arise in many applications such as semidefinite programming relaxations for combinatorial optimization problems, sparse principal component analysis, and sparse variance unfolding techniques for dimension reduction. Our algorithm exploits the structural similarity between semidefinite packing programs and linear packing programs.

[1]  Rajiv Raman,et al.  An SDP primal-dual algorithm for approximating the Lovász-theta function , 2009, ISIT.

[2]  Philip N. Klein,et al.  On the Number of Iterations for Dantzig-Wolfe Optimization and Packing-Covering Approximation Algorithms , 1999, SIAM J. Comput..

[3]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[4]  P. Wolfe,et al.  The minimization of certain nondifferentiable sums of eigenvalues of symmetric matrices , 1975 .

[5]  Éva Tardos,et al.  Fast Approximation Algorithms for Fractional Packing and Covering Problems , 1995, Math. Oper. Res..

[6]  Clifford Stein,et al.  Approximation Algorithms for Semidefinite Packing Problems with Applications to Maxcut and Graph Coloring , 2005, IPCO.

[7]  Yurii Nesterov,et al.  Smoothing Technique and its Applications in Semidefinite Optimization , 2004, Math. Program..

[8]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[9]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[10]  Rajiv Raman,et al.  An SDP Primal-Dual Algorithm for Approximating the Lovász-Theta Function , 2009, 2009 IEEE International Symposium on Information Theory.

[11]  Hsueh-I Lu,et al.  Efficient approximation algorithms for semidefinite programs arising from MAX CUT and COLORING , 1996, STOC '96.

[12]  Stephen P. Boyd,et al.  A duality view of spectral methods for dimensionality reduction , 2006, ICML.

[13]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[14]  Daniel Bienstock,et al.  Potential Function Methods for Approximately Solving Linear Programming Problems: Theory and Practice , 2002 .

[15]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[16]  Ulrich Berger,et al.  Brown's original fictitious play , 2007, J. Econ. Theory.

[17]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, CVPR.

[18]  Robert M. Freund,et al.  Dual gauge programs, with applications to quadratic programming and the minimum-norm problem , 1987, Math. Program..

[19]  Luca Trevisan,et al.  Max cut and the smallest eigenvalue , 2008, STOC '09.

[20]  Gene H. Golub,et al.  Matrix computations , 1983 .

[21]  Yousef Saad,et al.  Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..

[22]  R. Varga On Higher Order Stable Implicit Methods for Solving Parabolic Partial Differential Equations , 1961 .

[23]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[24]  Arkadi Nemirovski,et al.  Prox-Method with Rate of Convergence O(1/t) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems , 2004, SIAM J. Optim..

[25]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[26]  Daniel Bienstock,et al.  Solving fractional packing problems in Oast(1/ε) iterations , 2004, STOC '04.

[27]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[28]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1998, JACM.

[29]  Alexandre d'Aspremont,et al.  Smooth Optimization with Approximate Gradient , 2005, SIAM J. Optim..

[30]  Xiong Zhang,et al.  Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization , 1999, SIAM J. Optim..

[31]  Arkadi Nemirovski,et al.  Non-euclidean restricted memory level method for large-scale convex optimization , 2005, Math. Program..

[32]  Javier Peña,et al.  Smoothing Techniques for Computing Nash Equilibria of Sequential Games , 2010, Math. Oper. Res..

[33]  Sanjeev Arora,et al.  A combinatorial, primal-dual approach to semidefinite programs , 2007, STOC '07.

[34]  Martin Skutella,et al.  Convex quadratic and semidefinite programming relaxations in scheduling , 2001, JACM.

[35]  Marlis Hochbruck,et al.  Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..

[36]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[37]  Leonid Khachiyan,et al.  An exponential-function reduction method for block-angular convex programs , 1995, Networks.

[38]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[39]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[40]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[41]  Renato D. C. Monteiro,et al.  Convex optimization methods for dimension reduction and coefficient estimation in multivariate linear regression , 2009, Mathematical Programming.

[42]  A. S. Lewis,et al.  Derivatives of Spectral Functions , 1996, Math. Oper. Res..

[43]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..

[44]  A. Hoffman,et al.  Lower bounds for the partitioning of graphs , 1973 .

[45]  R. Monteiro,et al.  A projected gradient algorithm for solving the maxcut SDP relaxation , 2001 .

[46]  Luca Trevisan,et al.  Max cut and the smallest eigenvalue , 2008, STOC '09.

[47]  L. Lovász,et al.  Polynomial Algorithms for Perfect Graphs , 1984 .

[48]  Éva Tardos,et al.  Fast approximation algorithms for fractional packing and covering problems , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[49]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[50]  M. Laurent THE OPERATOR FOR THE CHROMATIC NUMBER OF AGRAPH , 2008 .

[51]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[52]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[53]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .