The boundary of hyperbolicity for Hénon-like families

Abstract We consider C2 Hénon-like families of diffeomorphisms of $ \mathbb R^{2} $ and study the boundary of the region of parameter values for which the non-wandering set is uniformly hyperbolic. Assuming sufficient dissipativity, we show that the loss of hyperbolicity is caused by a first homoclinic or heteroclinic tangency and that uniform hyperbolicity estimates hold uniformly in the parameter up to the bifurcation parameter and even, to some extent, at the bifurcation parameter.

[1]  Lai-Sang Young,et al.  Sinai-Bowen-Ruelle measures for certain Hénon maps , 1993 .

[2]  Marcelo Viana,et al.  Solution of the basin problem for Hénon-like attractors , 2001 .

[3]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[4]  J. Palis,et al.  Geometric theory of dynamical systems : an introduction , 1984 .

[5]  Lai-Sang Young,et al.  Markov Extensions and Decay of Correlations for Certain Hénon Maps , 2000, Astérisque.

[6]  Ja B Pesin FAMILIES OF INVARIANT MANIFOLDS CORRESPONDING TO NONZERO CHARACTERISTIC EXPONENTS , 1976 .

[7]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[8]  M. Holland,et al.  A new proof of the stable manifold theorem for hyperbolic fixed points on surfaces , 2003, math/0301235.

[9]  Parameter exclusions in Hénon-like systems , 2003, math/0304167.

[10]  Yongluo Cao,et al.  Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: Horseshoes with internal tangencies , 2003, math/0306041.

[11]  Eric John Bedford,et al.  Polynomial diffeomorphisms of C2. VIII: Quasi-expansion , 2001 .

[12]  J. Palis,et al.  Geometric theory of dynamical systems , 1982 .

[13]  Eric Bedford,et al.  Real polynomial diffeomorphisms with maximal entropy: Tangencies , 2001 .

[14]  W. D. Melo,et al.  ONE-DIMENSIONAL DYNAMICS , 2013 .

[15]  Stable manifolds under very weak hyperbolicity conditions , 2005, math/0502236.

[16]  Marcelo Viana,et al.  Abundance of strange attractors , 1993 .

[17]  Lai-Sang Young,et al.  Strange Attractors with One Direction of Instability , 2001 .

[18]  Lennart Carleson,et al.  The Dynamics of the Henon Map , 1991 .

[19]  Robert L. Devaney,et al.  Shift automorphisms in the Hénon mapping , 1979, Hamiltonian Dynamical Systems.

[20]  Eric Bedford,et al.  Real polynomial diffeomorphisms with maximal entropy: II. Small Jacobian , 2006, Ergodic Theory and Dynamical Systems.

[21]  A minimum principle for Lyapunov exponents and a higher-dimensional version of a theorem of Mañé , 2003, math/0309057.