Dynamic sustainability assessment of poverty alleviation in China: evidence from both novel non-convex global two-stage DEA and Malmquist productivity index

[1]  H. Fukuyama,et al.  Dynamic network data envelopment analysis with a sequential structure and behavioural-causal analysis: Application to the Chinese banking industry , 2022, Eur. J. Oper. Res..

[2]  J. Sadeghi,et al.  Malmquist productivity indices and plant capacity utilisation: new proposals and empirical application , 2022, Annals of Operations Research.

[3]  Barnabé Walheer Meta-frontier and technology switchers: A nonparametric approach , 2022, Eur. J. Oper. Res..

[4]  Yue Wang,et al.  Evaluating anti-poverty policy efficiencies in China: meta-frontier analysis using the two-stage data envelopment analysis model , 2021, China Agricultural Economic Review.

[5]  Jianchun Yang,et al.  A Study on the Efficiency of Tourism Poverty Alleviation in Ethnic Regions Based on the Staged DEA Model , 2021, Frontiers in Psychology.

[6]  Beatriz Tovar,et al.  Efficiency drivers for the South Pacific West coast port terminals: a two-stage non-convex metafrontier dea approach , 2021, Oper. Res..

[7]  Guo-liang Yang,et al.  PRODUCTIVITY ASSESSMENT OF THE REAL ESTATE INDUSTRY IN CHINA: A TWO-STAGE MALMQUIST PRODUCTIVITY INDEX , 2021, International Journal of Strategic Property Management.

[8]  X. Vo,et al.  Reinforcing poverty alleviation efficiency through technological innovation, globalization, and financial development , 2020, Technological Forecasting and Social Change.

[9]  Yong Tan,et al.  Modelling sustainability efficiency in banking , 2020, International Journal of Finance & Economics.

[10]  Chen Lin,et al.  Sources of inefficient power generation by coal-fired thermal power plants in China: A metafrontier DEA decomposition approach , 2020, Renewable and Sustainable Energy Reviews.

[11]  Lin Li,et al.  Does industrial convergence promote regional metabolism? Evidence from China , 2020 .

[12]  E. Nissi,et al.  Dynamic efficiency evaluation of Italian judicial system using DEA based Malmquist productivity indexes , 2020 .

[13]  Lin Li,et al.  How does population structure affect pollutant discharge in China? Evidence from an improved STIRPAT model , 2020, Environmental Science and Pollution Research.

[14]  Eleftherios Spyromitros,et al.  The Malmquist Productivity measure for UK-listed firms in the aftermath of the global financial crisis , 2020, Oper. Res..

[15]  Helu Xiao,et al.  Environmental efficiency and abatement potential analysis with a two-stage DEA model incorporating the material balance principle , 2020, Comput. Ind. Eng..

[16]  Jing Shuai,et al.  Has solar PV achieved the national poverty alleviation goals? Empirical evidence from the performances of 52 villages in rural China , 2020, Energy.

[17]  Kristiaan Kerstens,et al.  Metafrontier productivity indices: Questioning the common convexification strategy , 2020, Eur. J. Oper. Res..

[18]  Ming-Miin Yu,et al.  Evaluation of efficiency and technological bias of tourist hotels by a meta-frontier DEA model , 2020, J. Oper. Res. Soc..

[19]  Guo-liang Yang,et al.  Measuring destocking performance of the Chinese real estate industry: A DEA-Malmquist approach , 2020 .

[20]  Zihan Wang,et al.  Is the photovoltaic poverty alleviation project the best way for the poor to escape poverty? ——A DEA and GRA analysis of different projects in rural China , 2020 .

[21]  Qian Long Kweh,et al.  Modeling investments in the dynamic network performance of insurance companies , 2019, Omega.

[22]  Kristiaan Kerstens,et al.  Metatechnology frontier and convexity: A restatement , 2019, Eur. J. Oper. Res..

[23]  Zaiwu Gong,et al.  Extended DEA model under type-2 fuzzy environment , 2019, Kybernetes.

[24]  Magdalena Kapelko,et al.  Dynamic productivity change differences between global and non-global firms: a firm-level application to the U.S. food and beverage industries , 2019, Oper. Res..

[25]  M. Kapelko,et al.  Dynamic productivity change differences between global and non-global firms: a firm-level application to the U.S. food and beverage industries , 2019, Operational Research.

[26]  Mohsen Afsharian,et al.  A non-convex meta-frontier Malmquist index for measuring productivity over time , 2018 .

[27]  Jing Wang,et al.  Performance efficiency assessment of photovoltaic poverty alleviation projects in China: A three-phase data envelopment analysis model , 2018, Energy.

[28]  Mohsen Afsharian,et al.  A linear programming approach to efficiency evaluation in nonconvex metatechnologies , 2018, Eur. J. Oper. Res..

[29]  Lin Yang,et al.  Assessing regional eco-efficiency from the perspective of resource, environmental and economic performance in China: A bootstrapping approach in global data envelopment analysis , 2018 .

[30]  Wenbin Liu,et al.  Carbon emission performance evaluation and allocation in Chinese cities , 2018 .

[31]  Jie Wu,et al.  Measuring energy and environmental performance for regions in China by using DEA-based Malmquist indices , 2017, Oper. Res..

[32]  Ling Lin,et al.  Stochastic network DEA models for two-stage systems under the centralized control organization mechanism , 2017, Comput. Ind. Eng..

[33]  Ke Wang,et al.  Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach , 2017, Eur. J. Oper. Res..

[34]  Hashem Omrani,et al.  Dynamic DEA models with network structure: An application for Iranian airlines , 2016 .

[35]  Boqiang Lin,et al.  Energy efficiency and production technology heterogeneity in China's agricultural sector: A meta-frontier approach , 2016 .

[36]  Chunlu Liu,et al.  Profitability performance assessment in the Australian construction industry: a global relational two-stage DEA method , 2016 .

[37]  Lili Yang,et al.  Combining global Malmquist–Luenberger index and generalized method of moments to investigate industrial total factor CO2 emission performance: A case of Shanghai (China) , 2015 .

[38]  Wenbin Liu,et al.  Extended utility and DEA models without explicit input , 2014, J. Oper. Res. Soc..

[39]  Chiang Kao,et al.  Production , Manufacturing and Logistics Multi-period efficiency and Malmquist productivity index in two-stage production systems , 2013 .

[40]  Ali Emrouznejad,et al.  Measuring productive efficiency using Nerlovian profit efficiency indicator and metafrontier analysis , 2013, Oper. Res..

[41]  Fang Xu,et al.  A study of DEA models without explicit inputs , 2011 .

[42]  Hong Yan,et al.  Network DEA model for supply chain performance evaluation , 2011, Eur. J. Oper. Res..

[43]  N. Habibov,et al.  Comparing and contrasting poverty reduction performance of social welfare programs across jurisdictions in Canada using Data Envelopment Analysis (DEA): an exploratory study of the era of devolution. , 2010, Evaluation and program planning.

[44]  Carlos Pestana Barros,et al.  Hotel efficiency: A bootstrapped metafrontier approach , 2010 .

[45]  K. Tsekouras,et al.  Are cooperatives the weakest link in European banking? A non-parametric metafrontier approach , 2010 .

[46]  Dong-hyun Oh,et al.  A global Malmquist-Luenberger productivity index , 2010 .

[47]  K. Tone,et al.  Dynamic DEA: A slacks-based measure approach , 2010 .

[48]  Joe Zhu,et al.  Deriving the DEA frontier for two-stage processes , 2010, Eur. J. Oper. Res..

[49]  Zhuo Chen,et al.  Efficiency and technology gap in China's agriculture: A regional meta-frontier analysis , 2008 .

[50]  G. Battese,et al.  Metafrontier frameworks for the study of firm-level efficiencies and technology ratios , 2008 .

[51]  J. Pastor,et al.  A global Malmquist productivity index , 2005 .

[52]  L. R. Christensen,et al.  THE ECONOMIC THEORY OF INDEX NUMBERS AND THE MEASUREMENT OF INPUT, OUTPUT, AND PRODUCTIVITY , 1982 .

[53]  K. Kerstens,et al.  Comparing Luenberger and Luenberger-Hicks-Moorsteen productivity indicators: How well is total factor productivity approximated? , 2018 .

[54]  Joe Zhu,et al.  A note on two-stage network DEA model: Frontier projection and duality , 2016, Eur. J. Oper. Res..

[55]  Kaoru Tone,et al.  Dynamic DEA with network structure: A slacks-based measure approach , 2013 .

[56]  G. Karagiannis,et al.  Malmquist productivity index estimates for European agriculture in the 1990s , 2004, Oper. Res..

[57]  Rolf Färe,et al.  Malmquist Productivity Indexes and Fisher Ideal Indexes , 1992 .