Facilitation of dragonfly target-detecting neurons by slow moving features on continuous paths
暂无分享,去创建一个
Patrick A. Shoemaker | David C. O'Carroll | Steven D. Wiederman | James R. Dunbier | D. O’Carroll | S. Wiederman | P. Shoemaker
[1] Paul D. Barnett,et al. Insect Detection of Small Targets Moving in Visual Clutter , 2006, PLoS biology.
[2] Holger G. Krapp,et al. Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .
[3] Andrew D. Straw,et al. Vision Egg: an Open-Source Library for Realtime Visual Stimulus Generation , 2008, Frontiers Neuroinformatics.
[4] S. Laughlin,et al. Insect motion detectors matched to visual ecology , 1996, Nature.
[5] Michael H Dickinson,et al. Visual Edge Orientation Shapes Free-Flight Behavior in Drosophila , 2007, Fly.
[6] M. F. Land,et al. Chasing and pursuit in the dolichopodid fly Poecilobothrus nobilitatus , 1993, Journal of Comparative Physiology A.
[7] Johannes Zanker,et al. Modelling human motion perception II. Beyond Fourier motion stimuli , 1994, Naturwissenschaften.
[8] David O'Carroll,et al. Feature-detecting neurons in dragonflies , 1993, Nature.
[9] A. Borst,et al. What kind of movement detector is triggering the landing response of the housefly? , 1986, Biological Cybernetics.
[10] R. Olberg,et al. Prey size selection and distance estimation in foraging adult dragonflies , 2005, Journal of Comparative Physiology A.
[11] J. Zeil. Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera) , 1993, Journal of Comparative Physiology A.
[12] Patrick A. Shoemaker,et al. A Model for the Detection of Moving Targets in Visual Clutter Inspired by Insect Physiology , 2008, PloS one.
[13] R. Hengstenberg,et al. Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.
[14] Karin Nordström,et al. Local and Large-Range Inhibition in Feature Detection , 2009, The Journal of Neuroscience.
[15] J. Zeil,et al. Active vision in insects: an analysis of object-directed zig-zag flights in wasps (Odynerus spinipes , Eumenidae) , 1998, Journal of Comparative Physiology A.
[16] G A Horridge,et al. The separation of visual axes in apposition compound eyes. , 1978, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[17] M. Dickinson,et al. Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.
[18] Dario L. Ringach,et al. Flies see second-order motion , 2008, Current Biology.
[19] Tomaso Poggio,et al. Tracking and chasing in houseflies (Musca) , 1982, Biological Cybernetics.
[20] T. Collett,et al. Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.
[21] Karin Nordström,et al. Higher-order motion sensitivity in fly visual circuits , 2012, Proceedings of the National Academy of Sciences.
[22] Robert A. Harris,et al. Contrast Gain Reduction in Fly Motion Adaptation , 2000, Neuron.
[23] David C. O'Carroll,et al. Performance of a bio-inspired model for the robust detection of moving targets in high dynamic range natural scenes , 2010 .
[24] Karin Nordström,et al. Local and global responses of insect motion detectors to the spatial structure of natural scenes. , 2011, Journal of vision.
[25] A. Straw,et al. A `bright zone' in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity , 2006, Journal of Experimental Biology.
[26] T. Collett,et al. Visual control of flight behaviour in the hoverflySyritta pipiens L. , 1975, Journal of comparative physiology.
[27] Karin Nordström,et al. Octopaminergic modulation of contrast sensitivity , 2012, Front. Integr. Neurosci..
[28] Paul D. Barnett,et al. Motion Adaptation and the Velocity Coding of Natural Scenes , 2010, Current Biology.
[29] B. Hassenstein,et al. Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .
[30] R. Olberg,et al. Prey pursuit and interception in dragonflies , 2000, Journal of Comparative Physiology A.
[31] J. P. Lindemann,et al. Pattern-Dependent Response Modulations in Motion-Sensitive Visual Interneurons—A Model Study , 2011, PloS one.
[32] Alexander Borst,et al. Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons , 1995, Journal of Computational Neuroscience.
[33] David C. O'Carroll,et al. Retinotopic Organization of Small-Field-Target-Detecting Neurons in the Insect Visual System , 2007, Current Biology.
[34] Bart R. H. Geurten,et al. Neural mechanisms underlying target detection in a dragonfly centrifugal neuron , 2007, Journal of Experimental Biology.
[35] P. Corbet. Dragonflies: Behavior and Ecology of Odonata , 1999 .
[36] T. Collett,et al. How hoverflies compute interception courses , 1978, Journal of comparative physiology.
[37] Karin Nordström,et al. Feature detection and the hypercomplex property in insects , 2009, Trends in Neurosciences.
[38] David C O'Carroll,et al. Discrimination of Features in Natural Scenes by a Dragonfly Neuron , 2011, The Journal of Neuroscience.
[39] Alexander Borst,et al. Flight Activity Alters Velocity Tuning of Fly Motion-Sensitive Neurons , 2011, The Journal of Neuroscience.
[40] Michael B. Reiser,et al. Walking Modulates Speed Sensitivity in Drosophila Motion Vision , 2010, Current Biology.
[41] Patrick A. Shoemaker,et al. Modelling the temporal response properties of an insect small target motion detector , 2011, 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing.
[42] Robert M. Olberg,et al. Identified target-selective visual interneurons descending from the dragonfly brain , 1986, Journal of Comparative Physiology A.
[43] David C. O'Carroll,et al. Spatial facilitation by a high-performance dragonfly target-detecting neuron , 2011, Biology Letters.
[44] R. Olberg,et al. Eye movements and target fixation during dragonfly prey-interception flights , 2007, Journal of Comparative Physiology A.