Facilitation of dragonfly target-detecting neurons by slow moving features on continuous paths

Dragonflies detect and pursue targets such as other insects for feeding and conspecific interaction. They have a class of neurons highly specialized for this task in their lobula, the “small target motion detecting” (STMD) neurons. One such neuron, CSTMD1, reaches maximum response slowly over hundreds of milliseconds of target motion. Recording the intracellular response from CSTMD1 and a second neuron in this system, BSTMD1, we determined that for the neurons to reach maximum response levels, target motion must produce sequential local activation of elementary motion detecting elements. This facilitation effect is most pronounced when targets move at velocities slower than what was previously thought to be optimal. It is completely disrupted if targets are instantaneously displaced a few degrees from their current location. Additionally, we utilize a simple computational model to discount the parsimonious hypothesis that CSTMD1's slow build-up to maximum response is due to it incorporating a sluggish neural delay filter. Whilst the observed facilitation may be too slow to play a role in prey pursuit flights, which are typically rapidly resolved, we hypothesize that it helps maintain elevated sensitivity during prolonged, aerobatically intricate conspecific pursuits. Since the effect seems to be localized, it most likely enhances the relative salience of the most recently “seen” locations during such pursuit flights.

[1]  Paul D. Barnett,et al.  Insect Detection of Small Targets Moving in Visual Clutter , 2006, PLoS biology.

[2]  Holger G. Krapp,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[3]  Andrew D. Straw,et al.  Vision Egg: an Open-Source Library for Realtime Visual Stimulus Generation , 2008, Frontiers Neuroinformatics.

[4]  S. Laughlin,et al.  Insect motion detectors matched to visual ecology , 1996, Nature.

[5]  Michael H Dickinson,et al.  Visual Edge Orientation Shapes Free-Flight Behavior in Drosophila , 2007, Fly.

[6]  M. F. Land,et al.  Chasing and pursuit in the dolichopodid fly Poecilobothrus nobilitatus , 1993, Journal of Comparative Physiology A.

[7]  Johannes Zanker,et al.  Modelling human motion perception II. Beyond Fourier motion stimuli , 1994, Naturwissenschaften.

[8]  David O'Carroll,et al.  Feature-detecting neurons in dragonflies , 1993, Nature.

[9]  A. Borst,et al.  What kind of movement detector is triggering the landing response of the housefly? , 1986, Biological Cybernetics.

[10]  R. Olberg,et al.  Prey size selection and distance estimation in foraging adult dragonflies , 2005, Journal of Comparative Physiology A.

[11]  J. Zeil Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera) , 1993, Journal of Comparative Physiology A.

[12]  Patrick A. Shoemaker,et al.  A Model for the Detection of Moving Targets in Visual Clutter Inspired by Insect Physiology , 2008, PloS one.

[13]  R. Hengstenberg,et al.  Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.

[14]  Karin Nordström,et al.  Local and Large-Range Inhibition in Feature Detection , 2009, The Journal of Neuroscience.

[15]  J. Zeil,et al.  Active vision in insects: an analysis of object-directed zig-zag flights in wasps (Odynerus spinipes , Eumenidae) , 1998, Journal of Comparative Physiology A.

[16]  G A Horridge,et al.  The separation of visual axes in apposition compound eyes. , 1978, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[17]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[18]  Dario L. Ringach,et al.  Flies see second-order motion , 2008, Current Biology.

[19]  Tomaso Poggio,et al.  Tracking and chasing in houseflies (Musca) , 1982, Biological Cybernetics.

[20]  T. Collett,et al.  Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.

[21]  Karin Nordström,et al.  Higher-order motion sensitivity in fly visual circuits , 2012, Proceedings of the National Academy of Sciences.

[22]  Robert A. Harris,et al.  Contrast Gain Reduction in Fly Motion Adaptation , 2000, Neuron.

[23]  David C. O'Carroll,et al.  Performance of a bio-inspired model for the robust detection of moving targets in high dynamic range natural scenes , 2010 .

[24]  Karin Nordström,et al.  Local and global responses of insect motion detectors to the spatial structure of natural scenes. , 2011, Journal of vision.

[25]  A. Straw,et al.  A `bright zone' in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity , 2006, Journal of Experimental Biology.

[26]  T. Collett,et al.  Visual control of flight behaviour in the hoverflySyritta pipiens L. , 1975, Journal of comparative physiology.

[27]  Karin Nordström,et al.  Octopaminergic modulation of contrast sensitivity , 2012, Front. Integr. Neurosci..

[28]  Paul D. Barnett,et al.  Motion Adaptation and the Velocity Coding of Natural Scenes , 2010, Current Biology.

[29]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[30]  R. Olberg,et al.  Prey pursuit and interception in dragonflies , 2000, Journal of Comparative Physiology A.

[31]  J. P. Lindemann,et al.  Pattern-Dependent Response Modulations in Motion-Sensitive Visual Interneurons—A Model Study , 2011, PloS one.

[32]  Alexander Borst,et al.  Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons , 1995, Journal of Computational Neuroscience.

[33]  David C. O'Carroll,et al.  Retinotopic Organization of Small-Field-Target-Detecting Neurons in the Insect Visual System , 2007, Current Biology.

[34]  Bart R. H. Geurten,et al.  Neural mechanisms underlying target detection in a dragonfly centrifugal neuron , 2007, Journal of Experimental Biology.

[35]  P. Corbet Dragonflies: Behavior and Ecology of Odonata , 1999 .

[36]  T. Collett,et al.  How hoverflies compute interception courses , 1978, Journal of comparative physiology.

[37]  Karin Nordström,et al.  Feature detection and the hypercomplex property in insects , 2009, Trends in Neurosciences.

[38]  David C O'Carroll,et al.  Discrimination of Features in Natural Scenes by a Dragonfly Neuron , 2011, The Journal of Neuroscience.

[39]  Alexander Borst,et al.  Flight Activity Alters Velocity Tuning of Fly Motion-Sensitive Neurons , 2011, The Journal of Neuroscience.

[40]  Michael B. Reiser,et al.  Walking Modulates Speed Sensitivity in Drosophila Motion Vision , 2010, Current Biology.

[41]  Patrick A. Shoemaker,et al.  Modelling the temporal response properties of an insect small target motion detector , 2011, 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing.

[42]  Robert M. Olberg,et al.  Identified target-selective visual interneurons descending from the dragonfly brain , 1986, Journal of Comparative Physiology A.

[43]  David C. O'Carroll,et al.  Spatial facilitation by a high-performance dragonfly target-detecting neuron , 2011, Biology Letters.

[44]  R. Olberg,et al.  Eye movements and target fixation during dragonfly prey-interception flights , 2007, Journal of Comparative Physiology A.