Forward error correction in optical core and optical access networks

Forward error correction (FEC) techniques are essential for optical core and optical access networks. In optical core networks, the emphasis is on high coding gains and extremely low output bit error rates, while allowing decoder realizations to operate at a throughput of 100 Gb/s and above. Optical access networks operate at 10 Gb/s or above and require low-complexity FEC codes with low power consumption. Coherent optical transmission with higher order modulation formats will become mandatory to achieve the high spectral efficiencies required in next-generation core networks. In this paper, we provide an overview of these requirements and techniques, and highlight how coding and modulation can be best combined in optical core networks. We also present guidelines for modulation and low-complexity FEC system design for optical access networks.

[1]  Richard D. Wesel,et al.  Profile Optimal 8-QAM and 32-QAM Constellations , 1998 .

[2]  F. Buchali,et al.  1-Tbit/s dual-carrier DP 64QAM transmission at 64Gbaud with 40% overhead soft-FEC over 320km SSMF , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[3]  Gottfried Lechner,et al.  Optimization of LDPC Codes for Receiver Frontends , 2006, 2006 IEEE International Symposium on Information Theory.

[4]  Rüdiger L. Urbanke,et al.  Spatially coupled ensembles universally achieve capacity under belief propagation , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[5]  Stephen B. Wicker,et al.  Applications of Error-Control Coding , 1998, IEEE Trans. Inf. Theory.

[6]  Frank R. Kschischang,et al.  Staircase Codes: FEC for 100 Gb/s OTN , 2012, Journal of Lightwave Technology.

[7]  Daniel J. Costello,et al.  Channel coding: The road to channel capacity , 2006, Proceedings of the IEEE.

[8]  L. Moller,et al.  Demonstration of broad-band PMD mitigation in the presence of PDL through distributed fast polarization scrambling and forward-error correction , 2005, IEEE Photonics Technology Letters.

[9]  A. Agata,et al.  IEEE 802.3av 10G-EPON Standardization and Its Research and Development Status , 2010, Journal of Lightwave Technology.

[10]  M. Karlsson,et al.  Power-Efficient Modulation Formats in Coherent Transmission Systems , 2009, Journal of Lightwave Technology.

[11]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[12]  Gerhard Kramer,et al.  Spectral efficiency of coded phase-shift keying for fiber-optic communication , 2003 .

[13]  Frank Schreckenbach,et al.  Iterative Decoding of Bit-Interleaved Coded Modulation , 2007 .

[14]  K. Motoshima,et al.  Forward error correction based on block turbo code with 3-bit soft decision for 10-Gb/s optical communication systems , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Ramesh Pyndiah,et al.  Near-optimum decoding of product codes: block turbo codes , 1998, IEEE Trans. Commun..

[16]  Laurent Schmalen,et al.  Analysis and optimization of iteration schedules for LDPC coded modulation and detection , 2012, 2012 7th International Symposium on Turbo Codes and Iterative Information Processing (ISTC).

[17]  Maurizio Magarini,et al.  Concatenated Coded Modulation for Optical Communications Systems , 2010, IEEE Photonics Technology Letters.

[18]  S. ten Brink,et al.  Iterative demapping and decoding for multilevel modulation , 1998, IEEE GLOBECOM 1998 (Cat. NO. 98CH36250).

[19]  Simon Litsyn,et al.  Analysis of low-density parity-check codes based on EXIT functions , 2006, IEEE Transactions on Communications.

[20]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[21]  Venkatesan Guruswami Iterative Decoding of Low-Density Parity Check Codes , 2006, Bull. EATCS.

[22]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[23]  Giuseppe Caire,et al.  Bit-Interleaved Coded Modulation , 2008, Found. Trends Commun. Inf. Theory.

[24]  Michael Scholten,et al.  Continuously-interleaved BCH (CI-BCH) FEC delivers best in class NECG for 40G and 100G metro applications , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[25]  Sheng Chen,et al.  Design of Low-Density Parity-Check Codes , 2011, IEEE Vehicular Technology Magazine.

[26]  Roman Dischler Experimental comparison of 32-and 64-QAM constellation shapes on a coherent PDM burst mode capable system , 2011, 2011 37th European Conference and Exhibition on Optical Communication.

[27]  D.E. Hocevar,et al.  A reduced complexity decoder architecture via layered decoding of LDPC codes , 2004, IEEE Workshop onSignal Processing Systems, 2004. SIPS 2004..

[28]  David Chase,et al.  Class of algorithms for decoding block codes with channel measurement information , 1972, IEEE Trans. Inf. Theory.

[29]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[30]  A.J. van Wijngaarden,et al.  Multichannel PMD mitigation and outage reduction through FEC with sub-burst-error-correction period PMD scrambling , 2004, IEEE Photonics Technology Letters.

[31]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[32]  Stephan ten Brink,et al.  Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.

[33]  Rüdiger L. Urbanke,et al.  Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[34]  I.B. Djordjevic,et al.  Nonbinary LDPC codes for optical communication systems , 2005, IEEE Photonics Technology Letters.

[35]  Toby Berger,et al.  Coding for noisy channels with input-dependent insertions , 1977, IEEE Trans. Inf. Theory.

[36]  Hideki Imai,et al.  A new multilevel coding method using error-correcting codes , 1977, IEEE Trans. Inf. Theory.

[37]  Rudiger Urbanke,et al.  Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC , 2010, ISIT.

[38]  Paul H. Siegel,et al.  Windowed Decoding of Protograph-Based LDPC Convolutional Codes Over Erasure Channels , 2010, IEEE Transactions on Information Theory.

[39]  J. Bauwelinck,et al.  Simulations and Experiments on the Effective Optical Gain of FEC in a GPON Uplink , 2007, IEEE Photonics Technology Letters.

[40]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[41]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[42]  Xiaodong Li,et al.  Bit-interleaved coded modulation with iterative decoding , 1997, IEEE Communications Letters.

[43]  Glen Kramer,et al.  Ethernet passive optical network (EPON): building a next-generation optical access network , 2002, IEEE Commun. Mag..

[44]  Laurent Schmalen,et al.  Experimental evaluation of coded modulation for a coherent PDM system with high spectral efficiency , 2012, OFC/NFOEC.

[45]  Gabriella Bosco,et al.  Maximum Reach Versus Transmission Capacity for Terabit Superchannels Based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM , 2010, IEEE Photonics Technology Letters.

[46]  R. Blahut Algebraic Codes for Data Transmission , 2002 .

[47]  Laurent Schmalen,et al.  On threshold prediction of low-density parity-check codes with structure , 2012, 2012 46th Annual Conference on Information Sciences and Systems (CISS).

[48]  A. M. Abdullah,et al.  Wireless lan medium access control (mac) and physical layer (phy) specifications , 1997 .

[49]  Dariush Divsalar,et al.  Coding theorems for 'turbo-like' codes , 1998 .

[50]  T. Buerner,et al.  On a high-speed Reed-Solomon Codec architecture for 43 Gb/s optical transmission systems , 2004, 2004 24th International Conference on Microelectronics (IEEE Cat. No.04TH8716).

[51]  Alex J. Grant,et al.  Convergence analysis and optimal scheduling for multiple concatenated codes , 2005, IEEE Transactions on Information Theory.

[52]  Gerhard Fettweis,et al.  Asymptotically good LDPC convolutional codes with AWGN channel thresholds close to the Shannon limit , 2010, 2010 6th International Symposium on Turbo Codes & Iterative Information Processing.

[53]  Ting Wang,et al.  Iterative Polar Quantization-Based Modulation to Achieve Channel Capacity in Ultrahigh-Speed Optical Communication Systems , 2010, IEEE Photonics Journal.

[54]  ITU-T Rec. G.975.1 (02/2004) Forward error correction for high bit-rate DWDM submarine systems , 2005 .

[55]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[56]  Todor Cooklev,et al.  Air Interface for Fixed Broadband Wireless Access Systems , 2004 .

[57]  Laurent Schmalen,et al.  Combining Spatially Coupled LDPC Codes with Modulation and Detection , 2013 .

[58]  Richard D. Wesel,et al.  Selective avoidance of cycles in irregular LDPC code construction , 2004, IEEE Transactions on Communications.

[59]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[60]  Gerhard Fettweis,et al.  Efficient message passing scheduling for terminated LDPC convolutional codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[61]  Eduardo Mobilon,et al.  2.5 Gbits/s burst mode receiver for NG-PON , 2011, 2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011).

[62]  Yifei Zhang,et al.  Structured IRA Codes: Performance Analysis and Construction , 2007, IEEE Transactions on Communications.

[63]  Dariush Divsalar,et al.  Code Performance as a Function of Block Size , 1998 .

[64]  Kamil Sh. Zigangirov,et al.  Time-varying periodic convolutional codes with low-density parity-check matrix , 1999, IEEE Trans. Inf. Theory.

[65]  Ting Wang,et al.  Transmission of 32-Tb/s Capacity Over 580 km Using RZ-Shaped PDM-8QAM Modulation Format and Cascaded Multimodulus Blind Equalization Algorithm , 2010, Journal of Lightwave Technology.

[66]  Wei Yu,et al.  Complexity-Optimized Low-Density Parity-Check Codes , 2005 .

[67]  D. Costello,et al.  Approaching capacity with asymptotically regular LDPC codes , 2009, 2009 Information Theory and Applications Workshop.

[68]  Robert F. H. Fischer,et al.  Multilevel codes: Theoretical concepts and practical design rules , 1999, IEEE Trans. Inf. Theory.

[69]  Adriaan J. de Lind van Wijngaarden,et al.  Compact Highly-Utilized Reed Solomon Decoder Architectures for Optical Access Networks , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[70]  Michael Lentmaier,et al.  Iterative Decoding Threshold Analysis for LDPC Convolutional Codes , 2010, IEEE Transactions on Information Theory.

[71]  Marc P. C. Fossorier,et al.  Quasi-Cyclic Low-Density Parity-Check Codes From Circulant Permutation Matrices , 2004, IEEE Trans. Inf. Theory.

[72]  Stefan Dahlfort,et al.  Upstream FEC performance in combination with burst mode receivers for next generation 10 Gbit/s PON , 2010, 36th European Conference and Exhibition on Optical Communication.

[73]  H. Yoshida,et al.  Proposal for frame structure of optical channel transport unit employing LDPC codes for 100 Gb/s FEC , 2009, 2009 Conference on Optical Fiber Communication - incudes post deadline papers.

[74]  Zongwang Li,et al.  Efficient encoding of quasi-cyclic low-density parity-check codes , 2006, IEEE Trans. Commun..

[75]  H. Bulow,et al.  Polarization QAM modulation (POL-QAM) for coherent detection schemes , 2009, 2009 Conference on Optical Fiber Communication - incudes post deadline papers.

[76]  Alex Grant Iteration-constrained design of IRA codes , 2012 .

[77]  A. Veloz,et al.  "In band" FEC decoder for sonet/SDH at 2.5 Gbit/s and 10 Gbit/s , 2004, (ICEEE). 1st International Conference on Electrical and Electronics Engineering, 2004..

[78]  Wei Yu,et al.  Complexity-optimized low-density parity-check codes for gallager decoding algorithm B , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[79]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .