The Twisted Configuration of the Martian Magnetotail: MAVEN Observations

Measurements provided by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft are analyzed to investigate the Martian magnetotail configuration as a function of interplanetary magnetic field (IMF) BY. We find that the magnetotail lobes exhibit a ~45° twist, either clockwise or counterclockwise from the ecliptic plane, up to a few Mars radii downstream. Moreover, the associated cross‐tail current sheet is rotated away from the expected location for a Venus‐like induced magnetotail based on nominal IMF draping. Data‐model comparisons using magnetohydrodynamic simulations are in good agreement with the observed tail twist. Model field line tracings indicate that a majority of the twisted tail lobes are composed of open field lines, surrounded by draped IMF. We infer that dayside magnetic reconnection between the crustal fields and draped IMF creates these open fields and may be responsible for the twisted tail configuration, similar to what is observed at Earth.

[1]  B. Jakosky,et al.  Magnetic Reconnection on Dayside Crustal Magnetic Fields at Mars: MAVEN Observations , 2018 .

[2]  D. Mitchell,et al.  High‐Altitude Closed Magnetic Loops at Mars Observed by MAVEN , 2017 .

[3]  B. Jakosky,et al.  The Effect of Solar Wind Variations on the Escape of Oxygen Ions From Mars Through Different Channels: MAVEN Observations , 2017 .

[4]  D. Mitchell,et al.  Characterization of Low‐Altitude Nightside Martian Magnetic Topology Using Electron Pitch Angle Distributions , 2017 .

[5]  B. Jakosky,et al.  On the origins of magnetic flux ropes in near‐Mars magnetotail current sheets , 2017 .

[6]  M. Liemohn,et al.  Ionospheric control of the dawn‐dusk asymmetry of the Mars magnetotail current sheet , 2017 .

[7]  B. Jakosky,et al.  Survey of magnetic reconnection signatures in the Martian magnetotail with MAVEN , 2017 .

[8]  B. Jakosky,et al.  Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations , 2017 .

[9]  B. Jakosky,et al.  MAVEN observations of tail current sheet flapping at Mars , 2017 .

[10]  B. Jakosky,et al.  Structure, dynamics, and seasonal variability of the Mars‐solar wind interaction: MAVEN Solar Wind Ion Analyzer in‐flight performance and science results , 2017 .

[11]  B. Jakosky,et al.  Martian low‐altitude magnetic topology deduced from MAVEN/SWEA observations , 2016 .

[12]  B. Jakosky,et al.  Plasma clouds and snowplows: Bulk plasma escape from Mars observed by MAVEN , 2016 .

[13]  Bruce M. Jakosky,et al.  The Solar Wind Ion Analyzer for MAVEN , 2015 .

[14]  Bruce M. Jakosky,et al.  Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel , 2015 .

[15]  B. Jakosky,et al.  The spatial distribution of planetary ion fluxes near Mars observed by MAVEN , 2015 .

[16]  B. Jakosky,et al.  Implications of MAVEN Mars near‐wake measurements and models , 2015 .

[17]  B. Jakosky,et al.  Magnetic reconnection in the near‐Mars magnetotail: MAVEN observations , 2015 .

[18]  B. Jakosky,et al.  Magnetotail dynamics at Mars: Initial MAVEN observations , 2015 .

[19]  Takuya Hara,et al.  Marsward and tailward ions in the near‐Mars magnetotail: MAVEN observations , 2015 .

[20]  J. Luhmann,et al.  Solar wind interaction effects on the magnetic fields around Mars: Consequences for interplanetary and crustal field measurements , 2015 .

[21]  A. Nagy,et al.  Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variations , 2015 .

[22]  N. Romanelli,et al.  Dependence of the location of the Martian magnetic lobes on the interplanetary magnetic field direction: Observations from Mars Global Surveyor , 2015 .

[23]  J. Connerney,et al.  The MAVEN Magnetic Field Investigation , 2015 .

[24]  M. Kelley,et al.  The Mars Atmosphere and Volatile Evolution (MAVEN) Mission , 2013 .

[25]  J. Eastwood,et al.  A chain of magnetic flux ropes in the magnetotail of Mars , 2012 .

[26]  F. Duru,et al.  The Induced Magnetospheres of Mars, Venus, and Titan , 2011 .

[27]  F. Duru,et al.  Ion Energization and Escape on Mars and Venus , 2011 .

[28]  R. Lundin Ion Acceleration and Outflow from Mars and Venus: An Overview , 2011 .

[29]  J. Eastwood,et al.  In situ observations of reconnection Hall magnetic fields at Mars: Evidence for ion diffusion region encounters , 2009 .

[30]  A. Baker,et al.  Episodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape , 2009 .

[31]  S. Barabash,et al.  Structure and dynamics of the solar wind/ionosphere interface on Mars: MEX‐ASPERA‐3 and MEX‐MARSIS observations , 2008 .

[32]  S. Barabash,et al.  Magnetized Mars: Transformation of Earth-like magnetosphere to Venus-like induced magnetosphere , 2008 .

[33]  D. Mitchell,et al.  Evidence for collisionless magnetic reconnection at Mars , 2007 .

[34]  D. Mitchell,et al.  Electron pitch angle distributions as indicators of magnetic field topology near Mars , 2007 .

[35]  David Andrew Brain,et al.  Mars Global Surveyor Measurements of the Martian Solar Wind Interaction , 2007 .

[36]  D. Mitchell,et al.  Current sheets at low altitudes in the Martian magnetotail , 2006 .

[37]  M. Maggi,et al.  Structure of the martian wake , 2006 .

[38]  D. Mitchell,et al.  The magnetic field draping direction at Mars from April 1999 through August 2004 , 2006 .

[39]  D. Mitchell,et al.  Tectonic implications of Mars crustal magnetism. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Acuna,et al.  Solar wind interaction with the ionosphere/atmosphere and crustal magnetic fields at Mars: Mars Global Surveyor Magnetometer/Electron Reflectometer, radio science, and accelerometer data , 2004 .

[41]  Igor V. Sokolov,et al.  Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars , 2004 .

[42]  Dana Hurley Crider,et al.  The plasma Environment of Mars , 2004 .

[43]  M. Acuna,et al.  Mars Global Surveyor Observations of Solar Wind Magnetic Field Draping Around Mars , 2004 .

[44]  J. Arkani‐Hamed An improved 50-degree spherical harmonic model of the magnetic field of Mars derived from both high-altitude and low-altitude data , 2002 .

[45]  D. Mitchell,et al.  Structure of the magnetic field fluxes connected with crustal magnetization and topside ionosphere at Mars , 2002 .

[46]  D. Mitchell,et al.  The global magnetic field of Mars and implications for crustal evolution , 2001 .

[47]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[48]  Ness,et al.  Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission , 1998, Science.

[49]  J. Lyon,et al.  Interplanetary magnetic field control of magnetotail field: IMP 8 data and MHD model compared , 1995 .

[50]  R. Lundin,et al.  Solar wind electrons as tracers of the Martian magnetotail topology , 1994 .

[51]  C. Russell,et al.  Interplanetary magnetic field control of magnetotail magnetic field geometry: IMP 8 observations , 1994 .

[52]  R. Lundin,et al.  Ion acceleration in the Martian tail: Phobos observations , 1993 .

[53]  Snehavadan E. Macwan A determination of twisting of the Earth's magnetotail at distances 115-220 RE : ISEE 3 , 1992 .

[54]  C. Russell,et al.  A comparison of induced magnetotails of planetary bodies: Venus, Mars, and Titan , 1991 .

[55]  C. Russell,et al.  The magnetotail of Mars: Phobos observations , 1990 .

[56]  J. Slavin,et al.  The distant magnetotail's response to a strong interplanetary magnetic field By - Twisting, flattening, and field line bending , 1985 .

[57]  B. Tsurutani,et al.  The relationship between the IMF B(y) and the distant tail (150-238 Re) lobe and plasmasheet B(y) fields , 1984 .

[58]  C. Russell,et al.  The solar wind interaction , 1982, Nature.

[59]  J. Dungey The steady state of the Chapman‐Ferraro problem in two dimensions , 1961 .

[60]  W. I. Axford A commentary on our present understanding of the Martian magnetosphere , 1991 .

[61]  J. Slavin,et al.  The solar wind interaction with Mars revisited , 1982 .

[62]  Stanley W. H. Cowley,et al.  Magnetospheric asymmetries associated with the y-component of the IMF , 1981 .