A Novel CMOS High-Power Terahertz VCO Based on Coupled Oscillators: Theory and Implementation

We introduce a novel frequency tuning method for high-power terahertz sources in CMOS. In this technique, multiple core oscillators are coupled to generate, combine, and deliver their harmonic power to the output node without using varactors. By exploiting the theory of nonlinear dynamics, we control the coupling between the cores to set their phase shift and frequency. Using this method, two high-power terahertz VCOs are fabricated in a 65 nm LP bulk CMOS process. The first one has a measured output power of 0.76 mW at 290 GHz with 4.5% tuning range and the output power of the second VCO is 0.46 mW at 320 GHz with 2.6% tuning range. The output power of these signal sources is 4 orders of magnitude higher than previous CMOS VCOs and is even higher than VCOs implemented in compound semiconductors with much higher cut-off frequencies.

[1]  Howard C. Luong,et al.  Design and Analysis of Varactor-Less Interpolative-Phase-Tuning Millimeter-Wave LC Oscillators with Multiphase Outputs , 2011, IEEE Journal of Solid-State Circuits.

[2]  Robert A. York,et al.  A new phase-shifterless beam-scanning technique using arrays of coupled oscillators , 1993 .

[3]  Ehsan Afshari,et al.  280GHz and 860GHz image sensors using Schottky-barrier diodes in 0.13μm digital CMOS , 2012, 2012 IEEE International Solid-State Circuits Conference.

[4]  Munkyo Seo,et al.  InP HBT IC Technology for Terahertz Frequencies: Fundamental Oscillators Up to 0.57 THz , 2011, IEEE Journal of Solid-State Circuits.

[5]  Behzad Razavi,et al.  A 300-GHz Fundamental Oscillator in 65-nm CMOS Technology , 2010, IEEE Journal of Solid-State Circuits.

[6]  Vipul Jain,et al.  Design and Analysis of a W-Band SiGe Direct-Detection-Based Passive Imaging Receiver , 2011, IEEE Journal of Solid-State Circuits.

[7]  R. Adler A Study of Locking Phenomena in Oscillators , 1946, Proceedings of the IRE.

[8]  Robert A. York,et al.  Synchronization of oscillators coupled through narrow-band networks , 2001 .

[9]  Yan Zhao,et al.  A 1kpixel CMOS camera chip for 25fps real-time terahertz imaging applications , 2012, 2012 IEEE International Solid-State Circuits Conference.

[10]  Sorin P. Voinigescu,et al.  A Passive W-Band Imaging Receiver in 65-nm Bulk CMOS , 2010, IEEE Journal of Solid-State Circuits.

[11]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[12]  E Öjefors,et al.  Active 220- and 325-GHz Frequency Multiplier Chains in an SiGe HBT Technology , 2011, IEEE Transactions on Microwave Theory and Techniques.

[13]  Ruonan Han,et al.  Progress and Challenges Towards Terahertz CMOS Integrated Circuits , 2010, IEEE Journal of Solid-State Circuits.

[14]  Toshiya Mitomo,et al.  A 77 GHz 90 nm CMOS transceiver for FMCW radar applications , 2009, 2009 Symposium on VLSI Circuits.

[15]  Bo-Yu Lin,et al.  Analysis and Design of D-Band Injection-Locked Frequency Dividers , 2011, IEEE Journal of Solid-State Circuits.

[16]  F. Svelto,et al.  A Magnetically Tuned Quadrature Oscillator , 2007, IEEE Journal of Solid-State Circuits.

[17]  Kaushik Sengupta,et al.  Distributed active radiation for THz signal generation , 2011, 2011 IEEE International Solid-State Circuits Conference.

[18]  Sorin P. Voinigescu,et al.  An 18-Gb/s, Direct QPSK Modulation SiGe BiCMOS Transceiver for Last Mile Links in the 70–80 GHz Band , 2009, IEEE Journal of Solid-State Circuits.

[19]  Duixian Liu,et al.  A Fully-Integrated 16-Element Phased-Array Receiver in SiGe BiCMOS for 60-GHz Communications , 2010, IEEE Journal of Solid-State Circuits.

[20]  Mau-Chung Frank Chang,et al.  Terahertz CMOS Frequency Generator Using Linear Superposition Technique , 2008, IEEE Journal of Solid-State Circuits.

[21]  Ehsan Afshari,et al.  High Power Terahertz and Millimeter-Wave Oscillator Design: A Systematic Approach , 2011, IEEE Journal of Solid-State Circuits.

[22]  Arnulf Leuther,et al.  A 120–145 GHz Heterodyne Receiver Chipset Utilizing the 140 GHz Atmospheric Window for Passive Millimeter-Wave Imaging Applications , 2010, IEEE Journal of Solid-State Circuits.

[23]  Robert A. York,et al.  Phase noise in externally injection-locked oscillator arrays , 1997 .

[24]  Ehsan Afshari,et al.  A Low-Phase-Noise Wide-Tuning-Range Oscillator Based on Resonant Mode Switching , 2012, IEEE Journal of Solid-State Circuits.

[25]  Gabriel M. Rebeiz,et al.  $W$ -Band Amplifiers With 6-dB Noise Figure and Milliwatt-Level 170–200-GHz Doublers in 45-nm CMOS , 2012, IEEE Transactions on Microwave Theory and Techniques.

[26]  R. C. Compton,et al.  Quasi-optical power combining using mutually synchronized oscillator arrays , 1991 .

[27]  S. Gambini,et al.  A 90 nm CMOS Low-Power 60 GHz Transceiver With Integrated Baseband Circuitry , 2009, IEEE Journal of Solid-State Circuits.

[28]  R. Kaul,et al.  Microwave engineering , 1989, IEEE Potentials.

[29]  Jri Lee,et al.  A Low-Power Low-Cost Fully-Integrated 60-GHz Transceiver System With OOK Modulation and On-Board Antenna Assembly , 2009, IEEE Journal of Solid-State Circuits.

[30]  A. Babakhani,et al.  An Integrated Subharmonic Coupled-Oscillator Scheme for a 60-GHz Phased-Array Transmitter , 2006, IEEE Transactions on Microwave Theory and Techniques.

[31]  Ali M. Niknejad,et al.  A 90 GHz Hybrid Switching Pulsed-Transmitter for Medical Imaging , 2010, IEEE Journal of Solid-State Circuits.

[32]  Ehsan Afshari,et al.  Delay coupled oscillators for frequency tuning of solid-state terahertz sources. , 2012, Physical review letters.

[33]  Mohammed Ismail,et al.  A 10-GHz CMOS quadrature LC-VCO for multirate optical applications , 2003 .

[34]  J.R. Long,et al.  A 23-to-29 GHz Transconductor-Tuned VCO MMIC in 0.13 $\mu$m CMOS , 2007, IEEE Journal of Solid-State Circuits.

[35]  Robert A. York,et al.  Nonlinear analysis of phase relationships in quasi-optical oscillator arrays , 1993 .

[36]  Adrian Tang,et al.  183GHz 13.5mW/pixel CMOS regenerative receiver for mm-wave imaging applications , 2011, 2011 IEEE International Solid-State Circuits Conference.

[37]  B. Razavi A study of injection locking and pulling in oscillators , 2004, IEEE Journal of Solid-State Circuits.