Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots

[1]  G. Matheron Principles of geostatistics , 1963 .

[2]  N. Draper,et al.  Applied Regression Analysis , 1967 .

[3]  R. Kauth,et al.  The tasselled cap - A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat , 1976 .

[4]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[5]  E. Crist,et al.  Application of the Tasseled Cap concept to simulated thematic mapper data , 1984 .

[6]  V. Judson Harward,et al.  Mapping forest vegetation using landsat TM imagery and a canopy reflectance model , 1994 .

[7]  Albert R. Stage,et al.  Most Similar Neighbor: An Improved Sampling Inference Procedure for Natural Resource Planning , 1995, Forest Science.

[8]  A. Huete,et al.  A comparison of vegetation indices over a global set of TM images for EOS-MODIS , 1997 .

[9]  Emmanuel P. Baltsavias,et al.  Airborne laser scanning: basic relations and formulas , 1999 .

[10]  Werner A. Kurz,et al.  A 70-YEAR RETROSPECTIVE ANALYSIS OF CARBON FLUXES IN THE CANADIAN FOREST SECTOR , 1999 .

[11]  A. Huete,et al.  Optical-Biophysical Relationships of Vegetation Spectra without Background Contamination , 2000 .

[12]  Warren B. Cohen,et al.  Modelling forest cover attributes as continuous variables in a regional context with Thematic Mapper data , 2001 .

[13]  Janet L. Ohmann,et al.  Predictive mapping of forest composition and structure with direct gradient analysis and nearest- neighbor imputation in coastal Oregon, U.S.A. , 2002 .

[14]  W. Cohen,et al.  Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height , 2002 .

[15]  J. Franklin,et al.  Rationale and conceptual framework for classification approaches to assess forest resources and properties , 2003 .

[16]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[17]  W. Cohen,et al.  Landsat's Role in Ecological Applications of Remote Sensing , 2004 .

[18]  W. Kurz,et al.  National level forest monitoring and modeling in Canada , 2004 .

[19]  Michael A. Lefsky,et al.  Combining lidar estimates of aboveground biomass and Landsat estimates of stand age for spatially extensive validation of modeled forest productivity , 2005 .

[20]  M. Gillis,et al.  Monitoring Canada's forests: The National Forest Inventory , 2005 .

[21]  D. Lu Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon , 2005 .

[22]  F. Raulier,et al.  Canadian national tree aboveground biomass equations , 2005 .

[23]  D. Lu The potential and challenge of remote sensing‐based biomass estimation , 2006 .

[24]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[25]  Johannes R. Sveinsson,et al.  Random Forests for land cover classification , 2006, Pattern Recognit. Lett..

[26]  L. Ji,et al.  An Agreement Coefficient for Image Comparison , 2006 .

[27]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[28]  Scott L. Powell,et al.  Quantification of impervious surface in the Snohomish Water Resources Inventory Area of Western Washington from 1972–2006 , 2007 .

[29]  A. Hudak,et al.  Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data , 2008 .

[30]  M. Nilsson,et al.  Combining national forest inventory field plots and remote sensing data for forest databases , 2008 .

[31]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[32]  Joanne C. White,et al.  The role of LiDAR in sustainable forest management , 2008 .

[33]  Nicholas L. Crookston,et al.  yaImpute: An R Package for kNN Imputation , 2008 .

[34]  Joanne C. White,et al.  Monitoring Canada’s forests. Part 1: Completion of the EOSD land cover project , 2008 .

[35]  Martha C. Anderson,et al.  Free Access to Landsat Imagery , 2008, Science.

[36]  Nicholas L. Crookston,et al.  The roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases , 2009 .

[37]  J. Brandt The extent of the North American boreal zone , 2009 .

[38]  E. Tomppo National Forest Inventories : pathways for common reporting , 2010 .

[39]  D. Roy,et al.  Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States , 2010 .

[40]  Kenneth B. Pierce,et al.  Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches , 2010 .

[41]  B. Koch,et al.  Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors , 2010 .

[42]  Warren B. Cohen,et al.  Implications of Alternative Field-Sampling Designs on Landsat-Based Mapping of Stand Age and Carbon Stocks in Oregon Forests , 2010, Forest Science.

[43]  Michael A. Wulder,et al.  Integration of GLAS and Landsat TM data for aboveground biomass estimation , 2010 .

[44]  M. Lefsky A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System , 2010 .

[45]  Michael J. Oimoen,et al.  ASTER Global Digital Elevation Model Version 2 - summary of validation results , 2011 .

[46]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[47]  M. Hansen,et al.  Regional-scale boreal forest cover and change mapping using Landsat data composites for European Russia , 2011 .

[48]  Nicholas C. Coops,et al.  Model development for the estimation of aboveground biomass using a lidar-based sample of Canada’s boreal forest , 2011 .

[49]  Zhe Zhu,et al.  Object-based cloud and cloud shadow detection in Landsat imagery , 2012 .

[50]  Nicholas C. Coops,et al.  Lidar plots — a new large-area data collection option: context, concepts, and case study , 2012 .

[51]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[52]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[53]  Thomas R. Loveland,et al.  A review of large area monitoring of land cover change using Landsat data , 2012 .

[54]  W. Cohen,et al.  Using Landsat-derived disturbance history (1972-2010) to predict current forest structure , 2012 .

[55]  Joanne C. White,et al.  Lidar calibration and validation for geometric-optical modeling with Landsat imagery , 2012 .

[56]  Jungho Im,et al.  Forest biomass estimation from airborne LiDAR data using machine learning approaches , 2012 .

[57]  Nicholas C. Coops,et al.  Investigating the agreement between global canopy height maps and airborne Lidar derived height estimates over Canada , 2013 .

[58]  Mike D. Flannigan,et al.  An introduction to Canada’s boreal zone: ecosystem processes, health, sustainability, and environmental issues , 2013 .

[59]  Guoqing Sun,et al.  Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR , 2013 .

[60]  Joanne C. White,et al.  A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach , 2013 .

[61]  Ross Nelson,et al.  How did we get here? An early history of forestry lidar1 , 2013 .

[62]  Ryan J. Frazier,et al.  Characterization of aboveground biomass in an unmanaged boreal forest using Landsat temporal segmentation metrics , 2014 .

[63]  Nicholas C. Coops,et al.  Simulating the impacts of error in species and height upon tree volume derived from airborne laser scanning data , 2014 .

[64]  Harold S. J. Zald,et al.  Species distribution modelling for plant communities: stacked single species or multivariate modelling approaches? , 2014 .

[65]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[66]  Harold S. J. Zald,et al.  Influence of lidar, Landsat imagery, disturbance history, plot location accuracy, and plot size on accuracy of imputation maps of forest composition and structure , 2014 .

[67]  StinsonG.,et al.  Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery , 2014 .

[68]  Joanne C. White,et al.  Pixel-Based Image Compositing for Large-Area Dense Time Series Applications and Science , 2014 .

[69]  Michael J. Falkowski,et al.  A review of methods for mapping and prediction of inventory attributes for operational forest management , 2014 .

[70]  Guoqing Sun,et al.  Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America1 , 2015 .

[71]  Michael A. Wulder,et al.  Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm , 2015 .

[72]  Michael J. Falkowski,et al.  Temporal transferability of LiDAR-based imputation of forest inventory attributes , 2015 .

[73]  Joanne C. White,et al.  An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites , 2015 .

[74]  Justin Braaten,et al.  Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems , 2015 .

[75]  Joanne C. White,et al.  Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics , 2015 .

[76]  Michael A. Wulder,et al.  Trends in post-disturbance recovery rates of Canada’s forests following wildfire and harvest , 2016 .

[77]  J. Masek,et al.  The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data , 2016 .

[78]  David P. Roy,et al.  The global Landsat archive: Status, consolidation, and direction , 2016 .

[79]  Mariana Belgiu,et al.  Random forest in remote sensing: A review of applications and future directions , 2016 .

[80]  Caixia Liu,et al.  Quantifying Multi-Decadal Change of Planted Forest Cover Using Airborne LiDAR and Landsat Imagery , 2016, Remote. Sens..

[81]  Scott J. Goetz,et al.  Mapping tree height distributions in Sub-Saharan Africa using Landsat 7 and 8 data , 2016 .

[82]  Joanne C. White,et al.  Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada , 2016 .

[83]  Nicholas C. Coops,et al.  Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring , 2016, Int. J. Digit. Earth.

[84]  Gherardo Chirici,et al.  A meta-analysis and review of the literature on the k-Nearest Neighbors technique for forestry applications that use remotely sensed data , 2016 .

[85]  Ram K. Deo,et al.  Using Landsat Time-Series and LiDAR to Inform Aboveground Forest Biomass Baselines in Northern Minnesota, USA , 2017 .

[86]  C. Ramirez,et al.  Mapping site index and volume increment from forest inventory, Landsat, and ecological variables in Tahoe National Forest, California, USA , 2017 .

[87]  R. Nelson,et al.  Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations , 2017 .

[88]  Joanne C. White,et al.  A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series , 2017 .

[89]  Nicholas C. Coops,et al.  Updating Landsat time series of surface-reflectance composites and forest change products with new observations , 2017, Int. J. Appl. Earth Obs. Geoinformation.