Numerical Representations of Interval Orders
暂无分享,去创建一个
Juan Carlos Candeal | Esteban Induráin | Gianni Bosi | Margarita Zudaire | Esteban Olóriz | G. Bosi | E. Induráin | J. Candeal | M. Zudaire | Esteban Olóriz
[1] G. Debreu. Mathematical Economics: Continuity properties of Paretian utility , 1964 .
[2] G. Cantor,et al. Beiträge zur Begründung der transfiniten Mengenlehre. (Zweiter Artikel.) , 2022 .
[3] J. Jaffray. Existence of a Continuous Utility Function: An Elementary Proof , 1975 .
[4] P. Fishburn. Interval representations for interval orders and semiorders , 1973 .
[5] E. Induráin,et al. Representability of Interval Orders , 1998 .
[6] G. Debreu. Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .
[7] Jean-Paul Doignon,et al. On realizable biorders and the biorder dimension of a relation , 1984 .
[8] G. Bosi,et al. Representing preferences with nontransitive indifference by a single real-valued function☆ , 1995 .
[9] D. Bridges. Representing interval orders by a single real-valued function , 1985 .
[10] G. Herden. On the existence of utility functions ii , 1989 .
[11] R. Larsen,et al. The functional equationf(t)f(s)g(ts)=g(t)g(s) , 1970 .
[12] Esteban Induráin Eraso,et al. Representación numérica de órdenes totales , 1990 .
[13] Esteban Induráin Eraso,et al. Sobre caracterizaciones topológicas de la representabilidad de cadenas mediante funciones de utilidad , 1990 .
[14] G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre , 1897 .
[15] S. Gensemer. On relationships between numerical representations of interval orders and semiorders , 1987 .
[16] P. Fishburn. Intransitive indifference with unequal indifference intervals , 1970 .
[17] D. Bridges. Numerical representation of interval orders on a topological space , 1986 .
[18] A. Chateauneuf. Continuous representation of a preference relation on a connected topological space , 1987 .
[19] Peter C. Fishburn,et al. Utility theory for decision making , 1970 .
[20] Peter C. Fishburn,et al. Intransitive Indifference in Preference Theory: A Survey , 1970, Oper. Res..
[21] D. Bridges. Numerical representation of intransitive preferences on a countable set , 1983 .