A Parallel Line Search Subspace Correction Method for Composite Convex Optimization
暂无分享,去创建一个
Ya-Xiang Yuan | Z. Wen | Xin Liu | Q. Dong | Ya-xiang Yuan | Zaiwen Wen
[1] Bingsheng He,et al. On the Proximal Jacobian Decomposition of ALM for Multiple-Block Separable Convex Minimization Problems and Its Relationship to ADMM , 2016, J. Sci. Comput..
[2] Lin Xiao,et al. An Accelerated Randomized Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization , 2015, SIAM J. Optim..
[3] K. Toh,et al. A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions , 2014, Mathematical programming.
[4] Tianyi Lin,et al. On the Convergence Rate of Multi-Block ADMM , 2014 .
[5] Zhaosong Lu,et al. An Accelerated Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization , 2014, 1407.1296.
[6] Peter Richtárik,et al. Accelerated, Parallel, and Proximal Coordinate Descent , 2013, SIAM J. Optim..
[7] Wotao Yin,et al. Parallel Multi-Block ADMM with o(1 / k) Convergence , 2013, Journal of Scientific Computing.
[8] Ming Yan,et al. Parallel and distributed sparse optimization , 2013, 2013 Asilomar Conference on Signals, Systems and Computers.
[9] Zhi-Quan Luo,et al. Iteration complexity analysis of block coordinate descent methods , 2013, Mathematical Programming.
[10] Amir Beck,et al. On the Convergence of Block Coordinate Descent Type Methods , 2013, SIAM J. Optim..
[11] Shiqian Ma,et al. Solving Multiple-Block Separable Convex Minimization Problems Using Two-Block Alternating Direction Method of Multipliers , 2013, ArXiv.
[12] Lin Xiao,et al. Randomized Block Coordinate Non-Monotone Gradient Method for a Class of Nonlinear Programming , 2013, ArXiv.
[13] Lin Xiao,et al. On the complexity analysis of randomized block-coordinate descent methods , 2013, Mathematical Programming.
[14] Z. Luo,et al. On the Linear Convergence of a Proximal Gradient Method for a Class of Nonsmooth Convex Minimization Problems , 2013 .
[15] Carola-Bibiane Schönlieb,et al. Bregmanized Domain Decomposition for Image Restoration , 2013, J. Sci. Comput..
[16] Peter Richtárik,et al. Parallel coordinate descent methods for big data optimization , 2012, Mathematical Programming.
[17] Ambuj Tewari,et al. Feature Clustering for Accelerating Parallel Coordinate Descent , 2012, NIPS.
[18] Wotao Yin,et al. On the convergence of an active-set method for ℓ1 minimization , 2012, Optim. Methods Softw..
[19] Carola-Bibiane Schönlieb,et al. Wavelet Decomposition Method for L2//TV-Image Deblurring , 2012, SIAM J. Imaging Sci..
[20] Yurii Nesterov,et al. Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..
[21] Peter Richtárik,et al. Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function , 2011, Mathematical Programming.
[22] Joseph K. Bradley,et al. Parallel Coordinate Descent for L1-Regularized Loss Minimization , 2011, ICML.
[23] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[24] Ya-Xiang Yuan,et al. Optimization Theory and Methods: Nonlinear Programming , 2010 .
[25] Trevor Hastie,et al. Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.
[26] Ambuj Tewari,et al. Stochastic methods for l1 regularized loss minimization , 2009, ICML '09.
[27] Carola-Bibiane Schönlieb,et al. A convergent overlapping domain decomposition method for total variation minimization , 2009, Numerische Mathematik.
[28] Yin Zhang,et al. Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..
[29] Paul Tseng,et al. A coordinate gradient descent method for nonsmooth separable minimization , 2008, Math. Program..
[30] Carola-Bibiane Schönlieb,et al. Subspace Correction Methods for Total Variation and 1-Minimization , 2007, SIAM J. Numer. Anal..
[31] M. Fornasier. Domain decomposition methods for linear inverse problems with sparsity constraints , 2007 .
[32] S. Sathiya Keerthi,et al. A simple and efficient algorithm for gene selection using sparse logistic regression , 2003, Bioinform..
[33] Carsten Carstensen,et al. Domain decomposition for a non-smooth convex minimization problem and its application to plasticity , 1997, Numer. Linear Algebra Appl..
[34] Z.-Q. Luo,et al. Error bounds and convergence analysis of feasible descent methods: a general approach , 1993, Ann. Oper. Res..
[35] P. Tseng,et al. On the linear convergence of descent methods for convex essentially smooth minimization , 1992 .
[36] P. Tseng,et al. On the convergence of the coordinate descent method for convex differentiable minimization , 1992 .
[37] Bingsheng He,et al. The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent , 2014, Mathematical Programming.
[38] Xiaoming Yuan,et al. On the Direct Extension of ADMM for Multi-block Separable Convex Programming and Beyond : From Variational Inequality Perspective , 2014 .
[39] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[40] Ya-Xiang Yuan,et al. Optimization theory and methods , 2006 .
[41] Jinchao Xu,et al. Global and uniform convergence of subspace correction methods for some convex optimization problems , 2002, Math. Comput..
[42] Zi-Cai Li,et al. Schwarz Alternating Method , 1998 .
[43] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[44] J. Borwein,et al. Two-Point Step Size Gradient Methods , 1988 .
[45] B. Mercier,et al. A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .
[46] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[47] H. Schwarz. Ueber einige Abbildungsaufgaben. , 1869 .