Set-Valued and Lyapunov Methods for MPC

Model predictive control (MPC), sometimes referred to as the receding horizon control, is an optimization-based approach to stabilization of discrete-time control systems. It is well-known that infinite-horizon optimal control, with the Linear-Quadratic Regulator [1] as the fundamental example, can provide optimal controls that result in asymptotically stabilizing feedback [8].

[1]  Jürgen Pannek,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2017 .

[2]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[3]  Andrew R. Teel,et al.  Smooth Lyapunov functions and robustness of stability for difference inclusions , 2004, Syst. Control. Lett..

[4]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[5]  C. Kellett Classical Converse Theorems in Lyapunov's Second Method , 2015, 1502.04809.

[6]  Ricardo G. Sanfelice,et al.  Hybrid Dynamical Systems: Modeling, Stability, and Robustness , 2012 .

[7]  E. Gilbert,et al.  Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations , 1988 .

[8]  Lars Grne,et al.  Nonlinear Model Predictive Control: Theory and Algorithms , 2011 .

[9]  S. Raković Set Theoretic Methods in Model Predictive Control , 2009 .

[10]  Si-Zhao Joe Qin,et al.  Model-Predictive Control in Practice , 2015, Encyclopedia of Systems and Control.

[11]  Yu. S. Ledyaev,et al.  Asymptotic Stability and Smooth Lyapunov Functions , 1998 .

[12]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[13]  Andrew R. Teel,et al.  Examples when nonlinear model predictive control is nonrobust , 2004, Autom..

[14]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..