Solarthermal Processing: A Review

Research on solarthermal processing and the need for alternative energy sources have reached the point where efforts to develop some industrial processes and expand research to suggest others are at least desirable, if not imperative. This paper presents a rationale for such an effort, describes the underlying thermodynamics, and summarizes much of the research which has been conducted in the years since the end of World War II. Major emphasis is placed on the work that has been done since the imposition of the 1973 oil embargo and the present.

[1]  Raymond E. Kirk,et al.  Encyclopedia of chemical technology , 1998 .

[2]  E. A. Fletcher,et al.  Hydrogen and oxygen from water—VI. Quenching the effluent from a solar furnace , 1983 .

[3]  D. Nicholas,et al.  The photosynthetic production of hydrogen , 1976 .

[4]  E. A. Fletcher Solar thermochemical and electrochemical research - how they can help reduce the carbon dioxide burden , 1996 .

[5]  J. Blanco,et al.  Large solar plant photocatalytic water decontamination: Effect of operational parameters , 1996 .

[6]  M. Levy,et al.  A solar thermochemical pipe based on the CO2CH4 (1:1) system , 1986 .

[7]  Solarthermal and Solar Quasi-Electrolytic Processing and Separations: Zinc from Zinc Oxide as an Example , 1999 .

[8]  H. Yokokawa,et al.  Production of hydrogen from hydrogen sulfide by means of selective diffusion membranes , 1981 .

[9]  Y. Tamaura,et al.  GASIFICATION OF WASTE TYRE AND PLASTIC (PET) BY SOLAR THERMOCHEMICAL PROCESS FOR SOLAR ENERGY UTILIZATION , 1999 .

[10]  Keith Lovegrove,et al.  Endothermic reactors for an ammonia based thermochemical solar energy storage and transport system , 1996 .

[11]  Aldo Steinfeld,et al.  Solar thermal production of zinc and syngas via combined ZnO-reduction and CH4-reforming processes , 1995 .

[12]  Robert Palumbo,et al.  The production of Zn from ZnO in a high- temperature solar decomposition quench process—I. The scientific framework for the process , 1998 .

[13]  Anke Weidenkaff,et al.  A solar chemical reactor for co-production of zinc and synthesis gas , 1998 .

[14]  Robert Palumbo,et al.  Thermodynamic analysis of the co-production of zinc and synthesis gas using solar process heat , 1996 .

[15]  Robert Palumbo,et al.  The production of zinc by thermal dissociation of zinc oxide - Solar chemical reactor design , 1999 .

[16]  E. A. Fletcher,et al.  Y2O3-doped ZrO2 membranes for solar electrothermal and solarthermal separations — II. Electron hole conductivity of yttria-stabilized zirconia , 1993 .

[17]  Further studies of a zinc-air cell employing a packed bed anode Part III: Improvements in cell design , 1994 .

[18]  P. O. Carden Energy corradiation using the reversible ammonia reaction , 1977 .

[19]  Jeff Johnson DOE Cancels Billion–Dollar Waste Contract , 2000 .

[20]  T. L. Thiem,et al.  High temperature mass spectrometric studies of the bond energies of gas-phase ZnO, NiO, and CuO , 1993 .

[21]  T. Otagawa,et al.  Photochemical and thermoelectric utilization of solar energy in a hybrid water-splitting system , 1976 .

[22]  Richard B. Diver,et al.  Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport , 1992 .

[23]  M. Dokiya,et al.  Thermochemical hydrogen preparation—Part V. A feasibility study of the sulfur iodine cycle , 1979 .

[24]  P. Amaral,et al.  Photochemically promoted formation of higher carbide of molybdenum through reaction between metallic molybdenum powders and graphite powders in a solar furnace , 1999 .

[25]  T. Otagawa,et al.  System efficiency of a water-splitting system synthesized by photochemical and thermoelectric conversion of solar energy , 1978 .

[26]  M. Levy,et al.  Pyrolysis/g.c. of oil shales and coal , 1985 .

[27]  K. Kugeler,et al.  Considerations on high temperature reactors for process heat applications , 1975 .

[28]  J. E. Funk,et al.  Energy Requirements in Production of Hydrogen from Water , 1966 .

[29]  M. Dokiya,et al.  Hybrid cycle with electrolysis using CuCl system , 1976 .

[30]  M. Levy,et al.  Methane reforming by direct solar irradiation of the catalyst , 1992 .

[31]  F. Trombe,et al.  Essais sidérurgiques au four solaire , 1951 .

[32]  A. Steinfeld Solar-processed metals as clean energy carriers and water-splitters , 1998 .

[33]  A. Kogan Direct solar thermal splitting of water and on-site separation of the products — IV. Development of porous ceramic membranes for a solar thermal water-splitting reactor , 2000 .

[34]  J. E. Noring,et al.  Hydrogen sulfide as a source of hydrogen , 1984 .

[35]  Edward A. Fletcher,et al.  Metals, nitrides, and carbides via solar carbothermal reduction of metal oxides , 1995 .

[36]  B. Tilak,et al.  Hydrogen production from water: Summary of recent research and development presented at the Fifth WHEC , 1985 .

[37]  G. Beghi Development of thermochemical and hybrid processes for hydrogen production , 1985 .

[38]  Use of solar energy for direct and two-step water decomposition cycles , 1977 .

[39]  T. Grafe,et al.  High-temperature solar thermal processing Zn(s) and CO from ZnO(s) and C(gr) using Ti2O3(s) and TiO2(s) , 1992 .

[40]  A. Steinfeld,et al.  Production of filamentous carbon and hydrogen by solarthermal catalytic cracking of methane , 1997 .

[41]  P. Bernier,et al.  Solar energy: application to the production of fullerenes , 1996 .

[42]  Yutaka Tamaura,et al.  Coal gasification by CO2 gas bubbling in molten salt for solar/fossil energy hybridization , 2000 .

[43]  F. Sibieude,et al.  Dissociation of magnetite in a solar furnace for hydrogen production. Tentative production evaluation of a 1000 kW concentrator from small scale (2 kW) experimental results , 1984 .

[44]  James E. Funk,et al.  Hydrogen production via thermochemical cycles based on sulfur chemistry , 1976 .

[45]  P. Amaral,et al.  Catalytic Graphitisation of Amorphous Carbon during Solar Carbide Synthesis of VIa Group Metals (Cr, Mo and W) , 2000 .

[46]  Bernard M. Abraham,et al.  General Principles Underlying Chemical Cycles Which Thermally Decompose Water into the Elements , 1974 .

[47]  E. Fletcher,et al.  Hydrogen and oxygen from water—II: Some considerations in the reduction of the idea to practice , 1979 .

[48]  A. Steinfeld,et al.  Thermoanalysis of the combined Fe3O4-reduction and CH4-reforming processes , 1995 .

[49]  E. A. Fletcher,et al.  Hydrogen- and Oxygen from Water , 1977, Science.

[50]  K. F. Knoche,et al.  Thermochemical production of hydrogen by a vanadium/chlorine cycle. Part 1: An energy and exergy analysis of the process , 1984 .

[51]  M. J. Hale,et al.  Formation of fullerenes in highly concentrated solar flux , 1993 .

[52]  Jeffrey M. Gordon,et al.  Gasification of oil shales by solar energy , 1991 .

[53]  Robert Palumbo,et al.  High temperature solar electrothermal processing—III. Zinc from zinc oxide at 1200–1675K using a non-consumable anode , 1988 .

[54]  R. Chao Thermochemical water decomposition processes , 1974 .

[56]  A. Steinfeld,et al.  DIRECT SOLAR THERMAL DISSOCIATION OF ZINC OXIDE: CONDENSATION AND CRYSTALLISATION OF ZINC IN THE PRESENCE OF OXYGEN , 1999 .

[57]  Julián Blanco,et al.  Large solar plant photocatalytic water decontamination : degradation of pentachlorophenol , 1993 .

[58]  Edward A. Fletcher,et al.  High temperature solar electrothermal processing—II. Zinc from zinc oxide , 1983 .

[59]  Olivier Boutin,et al.  Radiant flash pyrolysis of cellulose—Evidence for the formation of short life time intermediate liquid species , 1998 .

[60]  E. Bilgen,et al.  Solar hydrogen production using two-step thermochemical cycles , 1982 .

[61]  D. Bahnemann,et al.  Large scale studies in solar catalytic wastewater treatment , 1999 .

[62]  J. Blanco,et al.  Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension , 1999 .

[63]  K. Knoche,et al.  Experimental and theoretical investigation of thermochemical hydrogen production , 1978 .

[64]  R. Rubin,et al.  Solar energy storage via a closed-loop chemical heat pipe , 1993 .

[65]  L. G. Rosa,et al.  Catalytic acceleration of graphitisation of amorphous carbon during synthesis of tungsten carbide from tungsten and excess amorphous carbon in a solar furnace , 1999 .

[66]  Robert Palumbo,et al.  Production of C from CO2 in a two-step solar process utilizing FeO and Fe3O4 , 1990 .

[67]  M. Dokiya,et al.  Catalytic Decomposition of Hydrogen Sulfide , 1978 .

[68]  A. Daane,et al.  The Rare Earths , 1962 .

[69]  Edward A. Fletcher,et al.  Reaction of steam with cellulose in a fluidized bed using concentrated sunlight , 1994 .

[70]  P. Bernier,et al.  Production of fullerenes from solar energy , 1995 .

[71]  Aldo Steinfeld,et al.  High-temperature solar thermochemistry: Production of iron and synthesis gas by Fe3O4-reduction with methane , 1993 .

[72]  J. Heizmann,et al.  Iron oxide reduction kinetics by hydrogen , 1980 .

[73]  Julián Blanco,et al.  Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species , 1998 .

[74]  A. Steinfeld,et al.  The coal/Fe3O4 system for mixing of solar and fossil energies , 1997 .

[75]  F. Trombe,et al.  Chemical vapour deposition of molybdenum and tungsten borides by thermal decomposition of gaseous mixtures of halides on a solar “front chaud” , 1973 .

[76]  F. Trombe,et al.  Essai de métallurgie du chrome par l’hydrogène au four solaire , 1951 .

[77]  J. H. Edwards,et al.  The chemistry of methane reforming with carbon dioxide and its current and potential applications , 1995 .

[78]  Amit Chakma,et al.  Production of hydrogen and sulfur from hydrogen sulfide , 1995 .

[79]  A study of the use of Y2O3 doped ZrO2 membranes for solar electrothermal and solarthermal separations , 1988 .

[80]  High temperature solar thermochemical processing—hydrogen and sulfur from hydrogen sulfide , 1982 .

[81]  P. Amaral,et al.  X-ray diffraction characterisation of carbide and carbonitride of Ti and Zr prepared through reaction between metal powders and carbon powders (graphitic or amorphous) in a solar furnace , 1999 .

[82]  Edward A. Fletcher,et al.  Theoretical and experimental investigation of the carbothermic reduction of Fe2O3 using solar energy , 1991 .

[83]  A. Steinfeld,et al.  Recycling of hazardous solid waste material using high-temperature solar process heat. 1. Thermodynamic analysis , 2000 .

[84]  Edward A. Fletcher,et al.  Extracting oil from shale using solar energy , 1988 .

[85]  Robert Palumbo,et al.  The production of Zn from ZnO in a two-step solar process utilizing FeO and Fe3O4 , 1997 .

[86]  James E. Funk,et al.  Entropy production, efficiency, and economics in the thermochemical generation of synthetic fuels: II. The methanol water splitting cycle , 1977 .

[87]  E. A. Fletcher,et al.  Hydrogen and oxygen from water—V. the ROC system , 1981 .

[88]  R. H. Wentorf,et al.  Thermochemical Hydrogen Generation , 1974, Science.

[89]  J. H. Edwards,et al.  Potential sources of CO2 and the options for its large-scale utilisation now and in the future , 1995 .

[90]  Michael Epstein,et al.  The kinetics of hydrogen production in the oxidation of liquid zinc with water vapor , 2000 .

[91]  Rachamim Rubin,et al.  Closed-loop operation of a solar chemical heat pipe at the Weizmann Institute solar furnace , 1991 .

[92]  K.-H. Funken,et al.  Catalytic thermochemical reactor/receiver for solar reforming of natural gas: Design and performance , 1998 .

[93]  M. Dokiya,et al.  The Application of the Effusion on the Thermochemically Limited Reaction , 1977 .

[94]  R. Smalley,et al.  Solar generation of the fullerenes , 1993 .

[95]  E. A. Fletcher,et al.  Thermolysis of hydrogen sulfide in the temperature range 1350-1600 K , 1998 .

[96]  Experimental Investigations on the Crystallization of Zinc by Direct Irradiation of Zinc Oxide in a Solar Furnace , 2000 .

[97]  Elyeser Spiegler,et al.  Direct solar thermal splitting of water and on-site separation of the products. III. , 2000 .

[98]  J. Baumard,et al.  Mixed conduction and defect structure of ZrO/sub 2/-CeO/sub 2/-Y/sub 2/O/sub 3/ solid solutions , 1984 .

[99]  A. Searcy,et al.  Sublimation and Thermodynamic Properties of Zinc Oxide , 1964 .

[100]  E. A. Fletcher,et al.  Hydrogen and sulfur from H2S-III. The economics of a quench process , 1985 .

[101]  Robert Palumbo,et al.  DESIGN ASPECTS OF SOLAR THERMOCHEMICAL ENGINEERING—A CASE STUDY: TWO-STEP WATER-SPLITTING CYCLE USING THE Fe3O4/FeO REDOX SYSTEM , 1999 .

[102]  W. Stein,et al.  The use of solar-based CO2/CH4 reforming for reducing greenhouse gas emissions during the generation of electricity and process heat , 1996 .

[103]  Keith Lovegrove,et al.  Thermodynamic limits on the performance of a solar thermochemical energy storage system , 1993 .

[104]  Jacques Lédé,et al.  SOLAR THERMOCHEMICAL CONVERSION OF BIOMASS , 1999 .

[105]  J. Giménez,et al.  Low-concentrating CPC collectors for photocatalytic water detoxification: Comparison with a medium concentrating solar collector , 1997 .

[106]  J. Giménez,et al.  Photocatalytic treatment of phenol and 2,4-dichlorophenol in a solar plant in the way to scaling-up , 1999 .

[107]  J. J. Ambriz,et al.  High temperature experiments with a solar furnace: The decomposition of Fe3O4, Mn3O4, CdO , 1982 .

[108]  T. Nakamura,et al.  Hydrogen production from water utilizing solar heat at high temperatures , 1977 .

[109]  Antje Wörner,et al.  CO2 reforming of methane in a solar driven volumetric receiver–reactor , 1998 .

[110]  T. Kodama,et al.  Reactive metal-oxide redox system for a two-step thermochemical conversion of coal and water to CO and H2 , 2000 .