High-throughput functional analysis of the Synechococcus elongatus PCC 7942 genome.

Synechococcus elongatus PCC 7942 was the first cyanobacterial strain to be reliably transformed by exogenously added DNA and has become the model organism for cyanobacterial circadian rhythms. With a small genome (2.7 Mb) and well-developed genetic tools, PCC 7942 provides an exceptional opportunity to elucidate the circadian mechanism through genetics. We describe a project to create mutations in every locus of the genome, both to assay each locus for its potential contribution to the circadian clock and to archive data for the cyanobacterial community. Cosmid clones that carry inserts of PCC 7942 DNA are saturated with transposon insertions in vitro to provide sequencing templates and substrates for mutagenesis of the PCC 7942 genome via homologous recombination. We have mutagenized 53% of the chromosome from 50 chromosome-bearing cosmids and identified the positions of insertions in 31 of those cosmids and the 46 kb plasmid, pANL. PCC 7942 mutants defective for 490 different genes have been screened for circadian phenotypes. Mutagenesis of three apparently essential loci, including clpPIIclpX, resulted in circadian phenotypes. We developed an effective antisense suppression method to further the analysis of essential genes. When completed, the set of comprehensive mutations will provide the community with a unique resource whose impact will extend beyond circadian research.

[1]  K. J. Reddy,et al.  Cloning, sequencing, and regulation of the global nitrogen regulator gene ntcA in the unicellular diazotrophic cyanobacterium Cyanothece sp. strain BH68K , 1997, Journal of bacteriology.

[2]  K. Mizuuchi,et al.  Mechanism of bacteriophage mu transposition. , 1986, Annual review of genetics.

[3]  Takao Kondo,et al.  A KaiC-associating SasA–RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria , 2006, Proceedings of the National Academy of Sciences.

[4]  S. Maloy Use of antibiotic-resistant transposons for mutagenesis. , 2007, Methods in enzymology.

[5]  J. Meeks,et al.  Transposon mutagenesis of Nostoc sp. strain ATCC 29133, a filamentous cyanobacterium with multiple cellular differentiation alternatives. , 1994, Microbiology.

[6]  Folker Meyer,et al.  Construction of a Large Signature-Tagged Mini-Tn5 Transposon Library and Its Application to Mutagenesis of Sinorhizobium meliloti , 2006, Applied and Environmental Microbiology.

[7]  S. Shestakov,et al.  Evidence for genetic transformation in blue-green alga Anacystis nidulans , 2004, Molecular and General Genetics MGG.

[8]  L. Stal,et al.  Nitrogenase activity in the non-heterocystous cyanobacterium Oscillatoria sp. grown under alternating light-dark cycles , 1985, Archives of Microbiology.

[9]  David Porta,et al.  Expression of the iron-responsive irpA gene from the cyanobacterium Synechococcus sp. strain PCC 7942 , 2002, Archives of Microbiology.

[10]  S. Gottesman,et al.  Clp P represents a unique family of serine proteases. , 1990, The Journal of biological chemistry.

[11]  Shulu Zhang,et al.  Four Novel Genes Required for Optimal Photoautotrophic Growth of the Cyanobacterium Synechocystis sp. Strain PCC 6803 Identified by In Vitro Transposon Mutagenesis , 2004, Journal of bacteriology.

[12]  L. Paulin,et al.  An efficient DNA sequencing strategy based on the bacteriophage mu in vitro DNA transposition reaction. , 1999, Genome research.

[13]  S. Golden,et al.  Specialized techniques for site-directed mutagenesis in cyanobacteria. , 2007, Methods in molecular biology.

[14]  C. Strayer,et al.  Efficient gene transfer in Synechococcus sp. strains PCC 7942 and PCC 6301 by interspecies conjugation and chromosomal recombination , 1994, Journal of bacteriology.

[15]  P. Hardin,et al.  Circadian rhythms from multiple oscillators: lessons from diverse organisms , 2005, Nature Reviews Genetics.

[16]  M. Schmid,et al.  Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana , 2003, Science.

[17]  P. Falkowski,et al.  Segregation of Nitrogen Fixation and Oxygenic Photosynthesis in the Marine Cyanobacterium Trichodesmium , 2001, Science.

[18]  S. Golden,et al.  Circadian clock mutants of cyanobacteria. , 1994, Science.

[19]  S. Golden,et al.  Bacterial luciferase as a reporter of circadian gene expression in cyanobacteria , 1995, Journal of bacteriology.

[20]  D. Mills Mutagenesis in the post genomics era: tools for generating insertional mutations in the lactic acid bacteria. , 2001, Current opinion in biotechnology.

[21]  S. Golden,et al.  Adaptive significance of circadian programs in cyanobacteria. , 1998, Trends in microbiology.

[22]  Harri Savilahti,et al.  An efficient and accurate integration of mini-Mu transposons in vitro: a general methodology for functional genetic analysis and molecular biology applications , 1999, Nucleic Acids Res..

[23]  [Complete genome sequence of a cyanobacterium Synechocystis sp. PCC 6803, the oxygenic photosynthetic prokaryote]. , 1996, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[24]  K. Forchhammer,et al.  Signal Transduction Protein PII Is Required for NtcA-Regulated Gene Expression during Nitrogen Deprivation in the Cyanobacterium Synechococcus elongatus Strain PCC 7942 , 2003, Journal of bacteriology.

[25]  C. Johnson,et al.  Phase Determination of Circadian Gene Expression in Synechococcus Elongatus PCC 7942 , 2004, Journal of biological rhythms.

[26]  C. Desmarais,et al.  Automated finishing with autofinish. , 2001, Genome research.

[27]  M. Kanehisa,et al.  Complete nucleotide sequence of the freshwater unicellular cyanobacterium Synechococcus elongatus PCC 6301 chromosome: gene content and organization , 2007, Photosynthesis Research.

[28]  S. Golden,et al.  A KaiC-Interacting Sensory Histidine Kinase, SasA, Necessary to Sustain Robust Circadian Oscillation in Cyanobacteria , 2000, Cell.

[29]  J. Zehr,et al.  Circadian Rhythm of Nitrogenase Gene Expression in the Diazotrophic Filamentous Nonheterocystous CyanobacteriumTrichodesmium sp. Strain IMS 101 , 1998, Journal of bacteriology.

[30]  J. Waterbury,et al.  Generic assignments, strain histories, and properties of pure cultures of cyanobacteria , 1979 .

[31]  K. Tanaka,et al.  A sigma factor that modifies the circadian expression of a subset of genes in cyanobacteria. , 1996, The EMBO journal.

[32]  P. Gustafsson,et al.  Over-production of the D1 protein of photosystem II reaction centre in the cyanobacterium Synechococcus sp. PCC 7942 , 1994, Plant Molecular Biology.

[33]  Michael J Rust,et al.  References and Notes Supporting Online Material Materials and Methods Figs. S1 to S8 Tables S1 to S3 References Ordered Phosphorylation Governs Oscillation of a Three-protein Circadian Clock , 2022 .

[34]  S. Golden,et al.  Detection of rhythmic bioluminescence from luciferase reporters in cyanobacteria. , 2007, Methods in molecular biology.

[35]  Corey M. Carlson,et al.  Insertional mutagenesis in mice: new perspectives and tools , 2005, Nature Reviews Genetics.

[36]  S. Golden,et al.  Circadian orchestration of gene expression in cyanobacteria. , 1995, Genes & development.

[37]  Y. Nakahira,et al.  Transcriptional regulation of the circadian clock operon kaiBC by upstream regions in cyanobacteria , 2005, Molecular microbiology.

[38]  F. Florencio,et al.  Nitrogen availability and electron transport control the expression of glnB gene (encoding PII protein) in the cyanobacterium Synechocystis sp. PCC 6803 , 1997, Plant Molecular Biology.

[39]  T. Kondo,et al.  Circadian expression of the dnaK gene in the cyanobacterium Synechocystis sp. strain PCC 6803 , 1995, Journal of bacteriology.

[40]  S. Golden,et al.  Genetic relationship of two highly studied Synechococcus strains designated Anacystis nidulans , 1989, Journal of bacteriology.

[41]  Anthony Hall,et al.  Plant Circadian Clocks Increase Photosynthesis, Growth, Survival, and Competitive Advantage , 2005, Science.

[42]  L. Sherman,et al.  Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142 , 1994, Journal of bacteriology.

[43]  R. Haselkorn,et al.  Expression of a family of psbA genes encoding a photosystem II polypeptide in the cyanobacterium Anacystis nidulans R2. , 1986, The EMBO journal.

[44]  C. Strayer,et al.  Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. Grossman,et al.  A region of a cyanobacterial genome required for sulfate transport. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[46]  T. Kondo,et al.  Reconstitution of Circadian Oscillation of Cyanobacterial KaiC Phosphorylation in Vitro , 2005, Science.

[47]  C. Lawrence,et al.  Mutagenesis induced by single UV photoproducts in E. coli and yeast. , 1993, Mutation research.

[48]  Takao Kondo,et al.  labA: a novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC. , 2007, Genes & development.

[49]  J. Kirby In vivo mutagenesis using EZ-Tn5. , 2007, Methods in enzymology.

[50]  K. Kitada,et al.  Transposon-tagged mutagenesis in the rat , 2007, Nature Methods.

[51]  L. Ségalat,et al.  Mos as a tool for genome-wide insertional mutagenesis in Caenorhabditis elegans: results of a pilot study. , 2004, Nucleic acids research.

[52]  S. Golden,et al.  Functional Elements of the Strong psbAIPromoter of Synechococcus elongatus PCC 7942 , 2001, Journal of bacteriology.

[53]  S. Golden,et al.  Roles for Sigma Factors in Global Circadian Regulation of the Cyanobacterial Genome , 2002, Journal of bacteriology.

[54]  B. Brahamsha,et al.  Transposon Mutagenesis in a Marine Synechococcus Strain: Isolation of Swimming Motility Mutants , 2005, Journal of bacteriology.

[55]  E. Flores,et al.  Carbon supply and 2-oxoglutarate effects on expression of nitrate reductase and nitrogen-regulated genes in Synechococcus sp. strain PCC 7942. , 2003, FEMS microbiology letters.

[56]  S. Golden Timekeeping in bacteria: the cyanobacterial circadian clock. , 2003, Current opinion in microbiology.

[57]  Susan S. Golden,et al.  Cyanobacterial circadian clocks — timing is everything , 2003, Nature Reviews Microbiology.

[58]  A. Ram,et al.  Agrobacterium-mediated transformation as a tool for functional genomics in fungi , 2005, Current Genetics.

[59]  G. Zabulon,et al.  Nitrogen or Sulfur Starvation Differentially Affects Phycobilisome Degradation and Expression of the nblA Gene in Synechocystis Strain PCC 6803 , 2001, Journal of bacteriology.

[60]  S. Kay,et al.  Time zones: a comparative genetics of circadian clocks , 2001, Nature Reviews Genetics.

[61]  R. Haselkorn,et al.  Genetic engineering of the cyanobacterial chromosome. , 1987, Methods in enzymology.

[62]  V. Capuano,et al.  An in vivo approach to define the role of the LCM, the key polypeptide of cyanobacterial phycobilisomes. , 1993, The Journal of biological chemistry.

[63]  S. Golden,et al.  ldpA Encodes an Iron-Sulfur Protein Involved in Light-Dependent Modulation of the Circadian Period in the Cyanobacterium Synechococcuselongatus PCC 7942 , 2003, Journal of bacteriology.

[64]  T. Kawula,et al.  Genome-Wide Identification of Francisella tularensis Virulence Determinants , 2007, Infection and Immunity.

[65]  N. Tsinoremas,et al.  An unusual gene arrangement for the putative chromosome replication origin and circadian expression of dnaN in Synechococcus sp. strain PCC 7942. , 1996, Gene.

[66]  P. Green,et al.  Consed: a graphical tool for sequence finishing. , 1998, Genome research.

[67]  C. R. McClung,et al.  Enhanced Fitness Conferred by Naturally Occurring Variation in the Circadian Clock , 2003, Science.

[68]  P. Weisbeek,et al.  Iron-dependent protection of theSynechococcus ferredoxin I transcript against nucleolytic degradation requirescis-regulatory sequences in the 5′ part of the messenger RNA , 1993, Plant Molecular Biology.

[69]  S. Haapa-Paananen,et al.  DNA Transposition of Bacteriophage Mu , 2002, The Journal of Biological Chemistry.

[70]  A. Clarke,et al.  Distinctive Types of ATP-dependent Clp Proteases in Cyanobacteria* , 2007, Journal of Biological Chemistry.

[71]  J. Zehr,et al.  Expression of photosynthesis genes in relation to nitrogen fixation in the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. IMS 101 , 1999, Plant Molecular Biology.

[72]  I. Saint Girons,et al.  Random Insertional Mutagenesis of Leptospira interrogans, the Agent of Leptospirosis, Using a mariner Transposon , 2005, Journal of bacteriology.

[73]  Finbarr Hayes,et al.  Transposon-based strategies for microbial functional genomics and proteomics. , 2003, Annual review of genetics.

[74]  K. Mizuuchi,et al.  Transpositional recombination: mechanistic insights from studies of mu and other elements. , 1992, Annual review of biochemistry.

[75]  Tan-Chi Huang,et al.  New type of N2-fixing unicellular cyanobacterium (blue-green alga) , 1986 .

[76]  R. Losick,et al.  Genomewide insertional mutagenesis in Streptomyces coelicolor reveals additional genes involved in morphological differentiation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Carl Hirschie Johnson,et al.  The Adaptive Value of Circadian Clocks An Experimental Assessment in Cyanobacteria , 2004, Current Biology.

[78]  K. Mysore,et al.  Insertional mutagenesis: a Swiss Army knife for functional genomics of Medicago truncatula. , 2005, Trends in plant science.

[79]  Takao Kondo,et al.  Circadian expression of genes involved in the purine biosynthetic pathway of the cyanobacterium Synechococcus sp. strain PCC 7942 , 1996, Molecular microbiology.

[80]  C. Johnson,et al.  Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. , 1998, Science.

[81]  O. Koksharova,et al.  Genetic tools for cyanobacteria , 2001, Applied Microbiology and Biotechnology.

[82]  B. Gvakharia,et al.  Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[83]  S. Golden,et al.  Resonating circadian clocks enhance fitness in cyanobacteria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[84]  J. Adams,et al.  Functional genomics of Plasmodium falciparum through transposon‐mediated mutagenesis , 2006, Cellular microbiology.

[85]  T. Kondo,et al.  A Period-Extender Gene, pex, That Extends the Period of the Circadian Clock in the Cyanobacterium Synechococcus sp. Strain PCC 7942 , 1998, Journal of bacteriology.

[86]  Kan Tanaka,et al.  The rpoD1 gene of Synechococcus sp. strain PCC 7942 encodes the principal sigma factor of RNA polymerase. , 1997, The Journal of general and applied microbiology.

[87]  Stanly B. Williams,et al.  Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[88]  W. Reznikoff The Tn5 transposon. , 1993, Annual review of microbiology.

[89]  A. Clarke,et al.  The clpP multigene family for the ATP-dependent Clp protease in the cyanobacterium Synechococcus. , 2002, Microbiology.

[90]  W. Reznikoff,et al.  Tn5 in Vitro Transposition* , 1998, The Journal of Biological Chemistry.

[91]  S. Golden,et al.  Light availability influences the ratio of two forms of D1 in cyanobacterial thylakoids. , 1989, The Journal of biological chemistry.

[92]  H. C. Johnson The elusive mechanism of circadian clock , 1986 .

[93]  David S. Wishart,et al.  Circular genome visualization and exploration using CGView , 2005, Bioinform..

[94]  A. Grossman,et al.  nblS, a Gene Involved in Controlling Photosynthesis-Related Gene Expression during High Light and Nutrient Stress inSynechococcus elongatus PCC 7942 , 2002, Journal of bacteriology.

[95]  A. Mitsui,et al.  Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically , 1986, Nature.

[96]  T. Kondo,et al.  Circadian rhythms of cyanobacteria: monitoring the biological clocks of individual colonies by bioluminescence , 1994, Journal of bacteriology.

[97]  E. Muller,et al.  Thioredoxin is essential for photosynthetic growth. The thioredoxin m gene of Anacystis nidulans. , 1989, The Journal of biological chemistry.

[98]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[99]  M. Snyder,et al.  Large-scale mutagenesis: yeast genetics in the genome era. , 2001, Current opinion in biotechnology.

[100]  G. Chaconas,et al.  Transposition of phage Mu DNA. , 1996, Current topics in microbiology and immunology.

[101]  S. Miyagishima,et al.  Identification of cyanobacterial cell division genes by comparative and mutational analyses , 2005, Molecular microbiology.

[102]  B. Sweeney,et al.  A CIRCADIAN RHYTHM IN CELL DIVISION IN A PROKARYOTE, THE CYANOBACTERIUM SYNECHOCOCCUS WH7803 1 , 1989 .

[103]  Payam Shahi,et al.  Novel Motility Mutants ofSynechocystis Strain PCC 6803 Generated by In Vitro Transposon Mutagenesis , 2001, Journal of bacteriology.

[104]  K. Mizuuchi,et al.  Target site selection in transposition of phage Mu. , 1993, Cold Spring Harbor symposia on quantitative biology.

[105]  S. Golden,et al.  CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. , 2000, Science.

[106]  Y. Nakahira,et al.  Mutations in KaiA, a clock protein, extend the period of circadian rhythm in the cyanobacterium Synechococcus elongatus PCC 7942. , 2002, Microbiology.

[107]  E. Raleigh,et al.  A simple in vitro Tn7-based transposition system with low target site selectivity for genome and gene analysis. , 2000, Nucleic acids research.

[108]  S. Golden,et al.  cpmA, a Gene Involved in an Output Pathway of the Cyanobacterial Circadian System , 1999, Journal of bacteriology.

[109]  C. Johnson,et al.  Circadian programming in cyanobacteria. , 2001, Seminars in cell & developmental biology.

[110]  A. Grossman,et al.  A small polypeptide triggers complete degradation of light‐harvesting phycobiliproteins in nutrient‐deprived cyanobacteria. , 1994, The EMBO journal.

[111]  J. Finne,et al.  Generation of transposon insertion mutant libraries for Gram-positive bacteria by electroporation of phage Mu DNA transposition complexes. , 2005, Microbiology.

[112]  P. Youderian,et al.  High-throughput functional analysis of the Synechococcus elongatus PCC 7942 genome. , 2005, DNA research : an international journal for rapid publication of reports on genes and genomes.

[113]  H. Hayashi,et al.  Characterization of a two-component signal transduction system involved in the induction of alkaline phosphatase under phosphate-limiting conditions in Synechocystis sp. PCC 6803 , 2004, Plant Molecular Biology.

[114]  J. Shelton,et al.  Application of bioluminescence to the study of circadian rhythms in cyanobacteria. , 2000, Methods in enzymology.

[115]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.