Diffusions and Confusions in Signal and Image Processing

In this paper we link, through simple examples, between three basic approaches for signal and image denoising and segmentation: (1) PDE axiomatics, (2) energy minimization and (3) adaptive filtering. We show the relation between PDE's that are derived from a master energy functional, i.e. the Polyakov harmonic action, and non-linear filters of robust statistics. This relation gives a simple and intuitive way of understanding geometric differential filters like the Beltrami flow. The relation between PDE's and filters is mediated through the short time kernel.

[1]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[2]  Tony F. Chan,et al.  The digital TV filter and nonlinear denoising , 2001, IEEE Trans. Image Process..

[3]  V. Rich Personal communication , 1989, Nature.

[4]  Guillermo Sapiro,et al.  Affine invariant scale-space , 1993, International Journal of Computer Vision.

[5]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Danny Barash,et al.  Bilateral Filtering and Anisotropic Diffusion: Towards a Unified Viewpoint , 2001, Scale-Space.

[7]  Alfred M. Bruckstein,et al.  On Projective Invariant Smoothing and Evolutions of Planar Curves and Polygons , 1997, Journal of Mathematical Imaging and Vision.

[8]  Steven Haker,et al.  Differential and Numerically Invariant Signature Curves Applied to Object Recognition , 1998, International Journal of Computer Vision.

[9]  Pietro Perona Orientation diffusions , 1998, IEEE Trans. Image Process..

[10]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[12]  Ron Kimmel,et al.  Orientation Diffusion or How to Comb a Porcupine , 2002, J. Vis. Commun. Image Represent..

[13]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[15]  Guillermo Sapiro,et al.  Direction diffusion , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[16]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[17]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[18]  Ron Kimmel,et al.  Images as Embedded Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images , 2000, International Journal of Computer Vision.

[19]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[20]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[21]  Joseph B. Keller,et al.  Short time asymptotic expansions of solutions of parabolic equations , 1972 .

[22]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[23]  Nir A. Sochen Stochastic Processes in Vision: From Langevin to Beltrami , 2001, ICCV.