Core–shell spherical graphite@SiC attenuating agent for AlN-based microwave attenuating ceramics with high–efficiency thermal conduction and microwave absorption abilities

[1]  R. Che,et al.  Confined Diffusion Strategy for Customizing Magnetic Coupling Spaces to Enhance Low‐frequency Electromagnetic Wave Absorption , 2023, Advanced Functional Materials.

[2]  W. Zhong,et al.  Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance , 2022, Nano Research.

[3]  Jingjing Zhang,et al.  Microstructure optimization of core@shell structured MSe2/FeSe2@MoSe2 (M = Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption , 2022, Journal of Materials Science & Technology.

[4]  Tianqi Hou,et al.  Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption , 2021, Chemical Engineering Journal.

[5]  R. Che,et al.  Dimensional Design and Core–Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption , 2021, Advanced materials.

[6]  Xiaoyun Li,et al.  β-SiC/AlN microwave attenuating composite ceramics with excellent and tunable microwave absorption properties , 2021 .

[7]  T. Jing,et al.  A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. , 2021, Journal of colloid and interface science.

[8]  Jian Yang,et al.  Controllable dielectric properties and strong electromagnetic wave absorption properties of SiC/spherical graphite-AlN microwave-attenuating composite ceramics , 2021 .

[9]  Shaohua Jiang,et al.  Electrospun fibrous materials and their applications for electromagnetic interference shielding: A review , 2021 .

[10]  Xuefeng Zhang,et al.  Enhanced dielectric and conductivity properties of carbon-coated SiC nanocomposites in the terahertz frequency range , 2021, Nanotechnology.

[11]  Wei Zhou,et al.  Electromagnetic wave absorbing performance of multiphase (SiC/HfC/C)/SiO2 nanocomposites with an unique microstructure , 2020 .

[12]  Yuchi Fan,et al.  Core-rim structured carbide MXene/SiO2 nanoplates as an ultrathin microwave absorber , 2020 .

[13]  Binghui Xu,et al.  Design and synthesis of NiCo/Co4S3@C hybrid material with tunable and efficient electromagnetic absorption. , 2020, Journal of colloid and interface science.

[14]  C. Deng,et al.  Optimization, selective and efficient production of CNTs/CoxFe3−xO4 core/shell nanocomposites as outstanding microwave absorbers , 2020 .

[15]  T. Qiu,et al.  Spherical glassy carbon/AlN microwave attenuating composite ceramics with high thermal conductivity and strong attenuation , 2020 .

[16]  T. Qiu,et al.  High-thermally conductive AlN-based microwave attenuating composite ceramics with spherical graphite as attenuating agent , 2020, Journal of Advanced Ceramics.

[17]  W. Cao,et al.  Assembling Nano–Microarchitecture for Electromagnetic Absorbers and Smart Devices , 2020, Advanced materials.

[18]  Zhenjun Wang,et al.  Electromagnetic and microwave absorption properties of FeSiAl and flaky graphite filled Al2O3 composites with different FeSiAl particle size , 2020 .

[19]  Hongjing Wu,et al.  Sodium citrate assisted hydrothermal synthesis of nickel cobaltate absorbers with tunable morphology and complex dielectric parameters toward efficient electromagnetic wave absorption , 2020 .

[20]  K. Zhao,et al.  Electrospinning synthesis of SiC/Carbon hybrid nanofibers with satisfactory electromagnetic wave absorption performance , 2020 .

[21]  C. Deng,et al.  Positive and Reverse Core/Shell Structure CoxFe3–xO4/MoS2 and MoS2/CoxFe3–xO4 Nanocomposites: Selective Production and Outstanding Electromagnetic Absorption Comprehensive Performance , 2020 .

[22]  V. V. B. Prasad,et al.  Microstructure and mechanical properties of a SiC containing advanced structural ceramics , 2019, International Journal of Refractory Metals and Hard Materials.

[23]  L. M. Zhang,et al.  Structural, thermal and dielectric properties of AlN–SiC composites fabricated by plasma activated sintering , 2019, Advances in Applied Ceramics.

[24]  Guanghua Liu,et al.  Effects of Y2O3 and yttrium aluminates as sintering additives on the thermal conductivity of AlN ceramic substrates , 2018, Ceramics International.

[25]  Lei Qian,et al.  Graphene platelets/aluminium nitride metacomposites with double percolation property of thermal and electrical conductivity , 2018, Journal of the European Ceramic Society.

[26]  Jiecai Han,et al.  A multiscale hierarchical architecture of a SiC whiskers–graphite nanosheets/polypyrrole ternary composite for enhanced electromagnetic wave absorption , 2018 .

[27]  Xiaoguang Li,et al.  Dielectric and microwave absorption properties of AlN‐SiBCN lossy ceramics , 2018 .

[28]  Xiaoyun Li,et al.  Method for fabricating microwave absorption ceramics with high thermal conductivity , 2018 .

[29]  Junbo Wang,et al.  Facile synthesis and microwave absorption properties of double loss Ti 3 SiC 2 /Co 3 Fe 7 powders , 2018 .

[30]  Xiaoyun Li,et al.  Electrical conductivity, dielectric and microwave absorption properties of graphene nanosheets/magnesia composites , 2017 .

[31]  Zhijiang Wang,et al.  Controllable Fabricating Dielectric-Dielectric SiC@C Core-Shell Nanowires for High-Performance Electromagnetic Wave Attenuation. , 2017, ACS applied materials & interfaces.

[32]  G. Wen,et al.  Enhanced microwave absorption properties of graphite nanoflakes by coating hexagonal boron nitride nanocrystals , 2017 .

[33]  Lai-fei Cheng,et al.  Effect of SiBCN content on the dielectric and EMW absorbing properties of SiBCN-Si3N4 composite ceramics , 2017 .

[34]  Lai-fei Cheng,et al.  Flexible SiC/Si3N4 Composite Nanofibers with in Situ Embedded Graphite for Highly Efficient Electromagnetic Wave Absorption. , 2017, ACS applied materials & interfaces.

[35]  S. K. Biswas,et al.  Aluminum Nitride–Single Walled Carbon Nanotube Nanocomposite with Superior Electrical and Thermal Conductivities , 2017 .

[36]  Shaohua Jiang,et al.  Highly foldable PANi@CNTs/PU dielectric composites toward thin-film capacitor application , 2017 .

[37]  Zhichuan J. Xu,et al.  Achieving tunable electromagnetic absorber via graphene/carbon sphere composites , 2016 .

[38]  Yuchang Qing,et al.  Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band , 2016 .

[39]  Xiaoyun Li,et al.  Mechanical, electrical, and thermal properties of graphene nanosheet/aluminum nitride composites , 2015 .

[40]  Lai-fei Cheng,et al.  High-temperature dielectric and microwave absorption properties of Si3N4–SiC/SiO2 composite ceramics , 2015, Journal of Materials Science.

[41]  M. Cao,et al.  Electrical conductivity and microwave absorption of shortened multi-walled carbon nanotube/alumina ceramic composites , 2013 .

[42]  Shiwei Lin,et al.  Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. , 2012, ACS nano.

[43]  Jingxian Zhang,et al.  Lossy AlN–SiC composites fabricated by spark plasma sintering , 2004 .

[44]  Hideo Takamizawa,et al.  Development and Microstructural Characterization of High‐Thermal‐Conductivity Aluminum Nitride Ceramics , 1988 .

[45]  T. Zhao,et al.  Thermally conductive and electrically insulating alumina-coated graphite/phthalonitrile composites with thermal stabilities , 2021 .

[46]  Lai-fei Cheng,et al.  Electrospinning of graphite/SiC hybrid nanowires with tunable dielectric and microwave absorption characteristics , 2018 .

[47]  Q. Cao,et al.  CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption , 2016, Advanced materials.

[48]  V. Agarwala,et al.  Effect of milling on dielectric and microwave absorption properties of SiC based composites , 2014 .

[49]  R. Hutcheon,et al.  AlN-based lossy ceramics for high average power microwave devices: performance-property correlation § , 2003 .