Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate

A terahertz (THz) spiral phase plate with high transmission (>90% after Fresnel correction) and low dispersion has been developed based on the Tsurupica olefin polymer. Direct observations of the topological charge (both magnitude and sign) of a THz vortex beam are performed by using a THz camera with tilted lens focusing and radial defect introduction. The vortex outputs with a topological charge of ±1 (or ±2) are obtained at a frequency of 2 (or 4) THz.

[1]  Ryuji Morita,et al.  Transfer of light helicity to nanostructures. , 2013, Physical review letters.

[2]  T. Omatsu,et al.  Sub-100 W picosecond output from a phase-conjugate Nd:YVO4 bounce amplifier. , 2009, Optics express.

[3]  Yun-Shik Lee,et al.  Principles of Terahertz Science and Technology , 2008 .

[4]  Hiromasa Ito,et al.  New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region. , 2010, Optics express.

[5]  R. Morita,et al.  Direct observation of Gouy phase shift in a propagating optical vortex. , 2006, Optics express.

[6]  Pravin Vaity,et al.  Measuring the topological charge of an optical vortex by using a tilted convex lens , 2013 .

[7]  Takashige Omatsu,et al.  Light induced conch-shaped relief in an azo-polymer film , 2014, Scientific reports.

[8]  Qiang Kan,et al.  Generation and evolution of the terahertz vortex beam. , 2013, Optics express.

[9]  Marco W. Beijersbergen,et al.  Helical-wavefront laser beams produced with a spiral phaseplate , 1994 .

[10]  Takashige Omatsu,et al.  Two-point-separation in super-resolution fluorescence microscope based on up-conversion fluorescence depletion technique. , 2003, Optics express.

[11]  E. Heilweil,et al.  Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz , 2000 .

[12]  S. Barnett,et al.  Detection of a Spinning Object Using Light’s Orbital Angular Momentum , 2013, Science.

[13]  Xiang Zhang,et al.  Negative refractive index in chiral metamaterials. , 2009, Physical review letters.

[14]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[15]  Ryuji Morita,et al.  Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures , 2012, Nano letters.

[16]  Christian Eggeling,et al.  Breaking the diffraction barrier in fluorescence microscopy by optical shelving. , 2007, Physical review letters.

[17]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[18]  Ryuji Morita,et al.  Metal microneedle fabrication using twisted light with spin. , 2010, Optics express.

[19]  R. J. Bell,et al.  Optical properties of Au, Ni, and Pb at submillimeter wavelengths. , 1987, Applied optics.

[20]  K. Kawase,et al.  Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. , 2003, Optics express.

[21]  Hiromasa Ito,et al.  Surface mapping of carrier density in a GaN wafer using a frequency-agile THz source , 2009 .

[22]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[23]  D. Grier A revolution in optical manipulation , 2003, Nature.

[24]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[25]  Mark R. Dennis,et al.  Isolated optical vortex knots , 2010 .

[26]  W Sibbett,et al.  Controlled Rotation of Optically Trapped Microscopic Particles , 2001, Science.

[27]  Stefan W. Hell,et al.  Nanoscopy in a Living Mouse Brain , 2012, Science.

[28]  Xi-Cheng Zhang,et al.  Terahertz Science and Technology Trends , 2008, IEEE Journal of Selected Topics in Quantum Electronics.