A NEW CLASS OF LUMINOUS TRANSIENTS AND A FIRST CENSUS OF THEIR MASSIVE STELLAR PROGENITORS

The progenitors of SN 2008S and the 2008 luminous transient in NGC 300 were deeply dust-enshrouded massive stars, with extremely red mid-infrared (MIR) colors and relatively low bolometric luminosities (≈5 × 10 4 L� ). The transients were optically faint compared to normal core-collapse supernovae (ccSNe), with peak absolute visual magnitudes of −13 MV −15, and their spectra exhibit narrow Balmer and [Ca ii] emission lines. These events are unique among transient–progenitor pairs and hence constitute a new class. Additional members of this class may include the M85 transient, SN 1999bw, 2002bu, and others. Whether they are true supernovae or bright massive-star eruptions, we argue that their rate is of order ∼20% of the ccSN rate in star-forming galaxies. This fact is remarkable in light of the observation that a very small fraction of all massive stars in any one galaxy, at any moment, have the infrared colors of the progenitors of SN 2008S and the NGC 300 transient. We show this by extracting MIR and optical luminosity, color, and variability properties of massive stars in M33 using archival imaging. We find that the fraction of massive stars with colors consistent with the progenitors of SN 2008S and the NGC 300 transient is 10 −4 . In fact, only 10 similar objects exist in M33 (and perhaps 1)—all of which lie at the luminous red extremum of the asymptotic giant branch sequence. That these transients are simultaneously relativelycommon with respect to supernovae, while their progenitors are remarkably rare compared to the massive star population, implies that the dust-enshrouded phase is a short-lived phenomenon in the lives of many massive stars. This shrouded epoch can occur only in the last10 4 yr before explosion, be it death or merely eruption. We discuss the implications of this finding for the evolution and census of “low-mass” massive stars (i.e., ∼8–12 M� ), and we connect it with theoretical discussions of electron-capture supernovae (ecSNe) near this mass range. Other potential mechanisms, including the explosive birth of massive white dwarfs and massive star outbursts, are also discussed. A systematic census with (warm)Spitzer of galaxies in the local universe (D10 Mpc) for analogous progenitors would significantly improve our knowledge of this channel to massive stellar explosions, and potentially to others with obscured progenitors.

[1]  Alexei V. Filippenko,et al.  A High Intrinsic Peculiarity Rate among Type Ia Supernovae , 2000, astro-ph/0006292.

[2]  W. D. Li,et al.  The Lick Observatory Supernova Search , 2000 .

[3]  J. Simon,et al.  The Spitzer Survey of the Small Magellanic Cloud: S3MC Imaging and Photometry in the Mid- and Far-Infrared Wave Bands , 2006, astro-ph/0608561.

[4]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[5]  John F. Beacom,et al.  Characterizing Supernova Progenitors via the Metallicities of their Host Galaxies, from Poor Dwarfs to Rich Spirals , 2007, 0707.0690.

[6]  Cecile Loup,et al.  An Empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich asymptotic giant branch stars , 2005 .

[7]  C. Ott,et al.  A New Mechanism for Core-Collapse Supernova Explosions , 2005, astro-ph/0510687.

[8]  R. Kirshner,et al.  Long γ-Ray Bursts and Type Ic Core-Collapse Supernovae Have Similar Locations in Hosts , 2007, 0712.0430.

[9]  C. Leitherer,et al.  Spitzer SAGE Survey of the Large Magellanic Cloud. II. Evolved Stars and Infrared Color-Magnitude Diagrams , 2006, astro-ph/0608189.

[10]  M. Smith,et al.  A Measurement of the Rate of Type Ia Supernovae at Redshift z ≈ 0.1 from the First Season of the SDSS-II Supernova Survey , 2008, 0801.3297.

[11]  J. Beacom,et al.  Detection of neutrinos from supernovae in nearby galaxies. , 2005, Physical review letters.

[12]  R. Kudritzki,et al.  The Araucaria Project: Near-Infrared Photometry of Cepheid Variables in the Sculptor Galaxy NGC 300 , 2005, astro-ph/0503626.

[13]  J. Blommaert,et al.  Luminosities and mass-loss rates of carbon stars in the Magellanic Clouds , 2007 .

[14]  SN 2002kg – the brightening of LBV V37 in NGC 2403 , 2004, astro-ph/0411504.

[15]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[16]  K. Stanek,et al.  The Fate of the Most Massive Stars , 2005 .

[17]  Detection of a Red Supergiant Progenitor Star of a Type II-Plateau Supernova , 2004, Science.

[18]  C. D. Laney,et al.  Spectroscopic and photometric observations of SN 1987a: the first 50 days , 1987 .

[19]  R. Kotak,et al.  SN 2008S: An electron-capture SN from a super-AGB progenitor? , 2009, 0903.1286.

[20]  R. Foley,et al.  On the Progenitors of Two Type IIP Supernovae in the Virgo Cluster 1 , 2009 .

[21]  S. Smartt,et al.  Faint supernovae and supernova impostors: case studies of SN 2002kg/NGC 2403-V37 and SN 2003gm , 2006, astro-ph/0603056.

[22]  E. Berger,et al.  AN INTERMEDIATE LUMINOSITY TRANSIENT IN NGC 300: THE ERUPTION OF A DUST-ENSHROUDED MASSIVE STAR , 2009, 0901.0710.

[23]  R. Humphreys,et al.  The M33 Variable Star Population Revealed by Spitzer , 2007, 0704.3026.

[24]  N. Brouillet,et al.  Particularly efficient star formation in M33 , 2007, 0707.2345.

[25]  J. Prieto Bright Infrared Progenitor of Luminous Transient in NGC300 implies Explosion of a Massive Star , 2008 .

[26]  W. Hillebrandt,et al.  The r-Process in Collapsing O/Ne/Mg Cores , 1997, astro-ph/9711273.

[27]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2009 .

[28]  Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae , 2005, astro-ph/0512065.

[29]  A. Pastorello,et al.  A giant outburst two years before the core-collapse of a massive star , 2007, Nature.

[30]  I. Yamamura,et al.  Very Large Telescope three micron spectra of dust-enshrouded red giants in the Large Magellanic Cloud , 2005, astro-ph/0510510.

[31]  Jr.,et al.  SINGS: The SIRTF Nearby Galaxies Survey , 2001, astro-ph/0305437.

[32]  Martin G. Cohen,et al.  Absolute Calibration of the Infrared Array Camera on the Spitzer Space Telescope , 2005, astro-ph/0507139.

[33]  J. Prieto,et al.  THE 2008 LUMINOUS OPTICAL TRANSIENT IN THE NEARBY GALAXY NGC 300 , 2009, 0901.0198.

[34]  M33'S VARIABLE A: A HYPERGIANT STAR MORE THAN 35 YEARS IN ERUPTION , 2006, astro-ph/0601116.

[35]  L. Strolger,et al.  The Extended HST Supernova Survey: The Rate of SNe Ia at z > 1.4 Remains Low , 2008, 0803.1130.

[36]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[37]  J. Beaulieu,et al.  Deep Canada–France–Hawaii Telescope photometric survey of the entire M33 galaxy – I. Catalogue of 36 000 variable point sources★ , 2006 .

[38]  F. Kitaura,et al.  NUCLEOSYNTHESIS IN ELECTRON CAPTURE SUPERNOVAE OF ASYMPTOTIC GIANT BRANCH STARS , 2008, 0810.3999.

[39]  M. Richmond,et al.  SN 1997bs in M66: Another Extragalactic η Carinae Analog? , 2000, astro-ph/0009027.

[40]  A search for core-collapse supernova progenitors in Hubble Space Telescope images , 2002, astro-ph/0210347.

[41]  S. Price,et al.  A Uniform Database of 2.4-45.4 Micron Spectra from the Infrared Space Observatory Short Wavelength Spectrometer , 2003 .

[42]  J. Prieto,et al.  Discovery of the Dust-Enshrouded Progenitor of SN 2008S with Spitzer , 2008, 0803.0324.

[43]  Enrique García-Berro,et al.  On the Evolution of Stars That Form Electron-degenerate Cores Processed by Carbon Burning. II. Isotope Abundances and Thermal Pulses in a 10 M sun Model with an ONe Core and Applications to Long-Period Variables, Classical Novae, and Accretion-induced Collapse , 1996 .

[44]  J. Prieto,et al.  A Survey About Nothing: Monitoring a Million Supergiants for Failed Supernovae , 2008, 0802.0456.

[45]  N. Chugaj The origin of supernovae with dense winds , 1997 .

[46]  A. Manchado,et al.  The high-velocity outflow in the proto-planetary nebula Hen 3-1475 , 2003, astro-ph/0303111.

[47]  Spherically Symmetric Simulation with Boltzmann Neutrino Transport of Core Collapse and Postbounce Evolution of a 15 M☉ Star , 2000, astro-ph/0005438.

[48]  K. Nomoto Evolution of 8--10 M sun Stars toward Electron Capture Supernovae. II. Collapse of an O + NE + MG Core , 1987 .

[49]  Spitzer Observations of the New Luminous Red Nova M85 OT2006-1 , 2006, astro-ph/0612161.

[50]  S. T. Megeath,et al.  Spectral Irradiance Calibration in the Infrared. XIII. “Supertemplates” and On-Orbit Calibrators for the SIRTF Infrared Array Camera , 2003, astro-ph/0304349.

[51]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[52]  M. Principe,et al.  SN 2005cs in M51 – I. The first month of evolution of a subluminous SN II plateau , 2006, astro-ph/0605700.

[53]  N. Langer,et al.  The Supernova Channel of Super-AGB Stars , 2007, 0705.4643.

[54]  Arjun Dey,et al.  Submitted to the Astrophysical Journal Letters Mid-Infrared Selection of Active Galaxies , 2004 .

[55]  D. Schiminovich,et al.  Panoramic GALEX Far- and Near-Ultraviolet Imaging of M31 and M33 , 2004, astro-ph/0411311.

[56]  Lionel Siess,et al.  Evolution of massive AGB stars: I.Carbon burning phase , 2006 .

[57]  D. Fox,et al.  On the Progenitor of SN 2005gl and the Nature of Type IIn Supernovae , 2006, astro-ph/0608029.

[58]  R. C. Smith,et al.  A Survey of Local Group Galaxies Currently Forming Stars. III. A Search for Luminous Blue Variables and Other Hα Emission-Line Stars , 2007, 0709.1267.

[59]  R. Humphreys,et al.  A Point-Source Survey of M31 with the Spitzer Space Telescope , 2008, 0807.0941.

[60]  A. Filippenko,et al.  A Hubble Space Telescope Snapshot Survey of Nearby Supernovae , 2002, astro-ph/0201228.

[61]  J. Beacom,et al.  Diffuse supernova neutrino background is detectable in Super-Kamiokande , 2008, 0812.3157.

[62]  J. Anderson,et al.  Constraints on core-collapse supernova progenitors from correlations with Hα emission , 2008, 0809.0236.

[63]  B. Schaefer Volume-limited Samples of Supernovae , 1996 .

[64]  D. Bersier,et al.  The First DIRECT Distance Determination to a Detached Eclipsing Binary in M33 , 2006 .

[65]  Lionel Siess,et al.  Evolution of massive AGB stars - II. model properties at non-solar metallicity and the fate of Super-AGB stars , 2007 .

[66]  Low‐luminosity Type II supernovae: spectroscopic and photometric evolution , 2003, astro-ph/0309264.

[67]  Anthony Mezzacappa,et al.  Probing the gravitational well: no supernova explosion in spherical symmetry with general relativistic boltzmann neutrino transport , 2001 .

[68]  E. O. Ofek,et al.  An unusually brilliant transient in the galaxy M85 , 2007, Nature.

[69]  D. Branch,et al.  Extending the model of Dawson & Johnson for the observability of supernovae , 1997 .

[70]  C. Alard Image subtraction using a space-varying kernel , 2000 .

[71]  G. Anupama,et al.  Photometric and spectroscopic evolution of the Type IIP supernova SN 2004et , 2006, astro-ph/0608432.

[72]  S. Woosley,et al.  EVOLUTION AND EXPLOSION OF MASSIVE STARS * , 1978, Reviews of Modern Physics.

[73]  K. Stanek,et al.  HATNET Variability Survey in the High Stellar Density “Kepler Field” with Millimagnitude Image Subtraction Photometry , 2004 .

[74]  S. Smartt,et al.  Ruling out a massive asymptotic giant-branch star as the progenitor of supernova 2005cs , 2007, astro-ph/0701152.

[75]  R. C. Smith,et al.  A Survey of Local Group Galaxies Currently Forming Stars. I. UBVRI Photometry of Stars in M31 and M33 , 2006, astro-ph/0602128.

[76]  S. Kwok Proto-Planetary Nebulae , 1993 .

[77]  R. Thomas,et al.  A Comparative Study of the Absolute Magnitude Distributions of Supernovae , 2001, astro-ph/0112051.

[78]  Ryan Chornock,et al.  The Katzman Automatic Imaging Telescope Gamma‐Ray Burst Alert System, and Observations of GRB 020813 , 2003, astro-ph/0305027.

[79]  J. Gorosabel,et al.  Discovery and Evolution of an Unusual Luminous Variable Star in NGC 3432 (Supernova 2000ch) , 2004, astro-ph/0404035.

[80]  U. Munari,et al.  An energetic stellar outburst accompanied by circumstellar light echoes , 2003, Nature.

[81]  W. K. Huchtmeier,et al.  A Catalog of Neighboring Galaxies , 2004 .

[82]  N. Duric,et al.  A New Optical Sample of Supernova Remnants in M33 , 1998 .

[83]  E. Ofek,et al.  The Environment of M85 Optical Transient 2006-1: Constraints on the Progenitor Age and Mass , 2007, 0710.3192.

[84]  Adam Burrows,et al.  Shock Breakout in Core-Collapse Supernovae and Its Neutrino Signature , 2002, astro-ph/0211194.

[85]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[86]  D. A. García-Hernández,et al.  Spitzer IRS Spectroscopy of High-Mass Precursors of Planetary Nebulae , 2007, 0707.4314.

[87]  R. Chornock,et al.  SN 2008S: A COOL SUPER-EDDINGTON WIND IN A SUPERNOVA IMPOSTOR , 2008, 0811.3929.

[88]  M. Rampp,et al.  Improved models of stellar core collapse and still no explosions: what is missing? , 2003, Physical review letters.

[89]  The H$\mathsf{\alpha}$ Galaxy Survey - III. Constraints on supernova progenitors from spatial correlations with H$\mathsf{\alpha}$ emission , 2006, astro-ph/0602471.

[90]  Massive Stars as Cosmic Engines , 2008 .

[91]  Thibault Lejeune,et al.  Database of Geneva stellar evolution tracks and isochrones for (UBV) J (RI) C JHKLL'M, HST-WFPC2, Geneva and Washington photometric systems , 2000 .

[92]  R. Humphreys,et al.  Post‐Eruption Detection of Variable 12 in NGC 2403 (SN 1954j): Another η Carinae Variable , 2001 .

[93]  R. Walterbos,et al.  Far-Ultraviolet and Hα Imaging of Nearby Spiral Galaxies: The OB Stellar Population in the Diffuse Ionized Gas , 2001, astro-ph/0107449.

[94]  K. Nomoto Evolution of 8-10 solar mass stars toward electron capture supernovae. I - Formation of electron-degenerate O + NE + MG cores. , 1984 .