Incorporating Covariates in the Measurement of Welfare and Inequality: Methods and Applications

Methods for comparing social welfare and inequality across populations typically involve the entire distribution of economic wellbeing. Conditional analysis requires an estimate of the entire distribution conditional on a large set of covariates. In this paper, we present methods for estimating conditional distributions including flexible parametric, semiparametric and non‐parametric approaches. We demonstrate how to use the statistical properties of the estimators to conduct inference for welfare and inequality comparisons conditional on covariates. Further, we consider how to use the results to perform counterfactual analysis.

[1]  Shirley M. Buttrick,et al.  Poverty and Discrimination , 1971 .

[2]  H. Ichimura,et al.  SEMIPARAMETRIC LEAST SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS , 1993 .

[3]  O. Linton,et al.  Consistent Testing for Stochastic Dominance: A Subsampling Approach , 2002 .

[4]  P. Lambert The Distribution and Redistribution of Income , 1989 .

[5]  Joya Misra,et al.  The Intersection of Gender and Race in the Labor Market , 2003 .

[6]  John A. Bishop,et al.  International Comparisons of Income Inequality: Tests for Lorenz Dominance across Nine Countries , 1991 .

[7]  Kevin Lang,et al.  Poverty and Discrimination , 2007 .

[8]  Stephen G. Donald,et al.  Statistical Inference with Generalized Gini Indices of Inequality, Poverty, and Welfare , 2009 .

[9]  C. Rothe Nonparametric estimation of distributional policy effects , 2010 .

[10]  F. Wolak Testing inequality constraints in linear econometric models , 1989 .

[11]  Thomas Lemieux,et al.  Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach , 1995 .

[12]  Gordon Anderson,et al.  Nonparametric Tests of Stochastic Dominance in Income Distributions , 1996 .

[13]  Russell Davidson,et al.  Distribution-Free Statistical Inference with Lorenz Curves and Income Shares , 1983 .

[14]  Kuan Xu,et al.  Inference for Generalized Gini Indices Using the Iterated-Bootstrap Method , 2000 .

[15]  RiÄ ardas Zitikis,et al.  ASYMPTOTIC ESTIMATION OF THE E-GINI INDEX , 2003, Econometric Theory.

[16]  Joseph L. Gastwirth,et al.  The Asymptotic Distribution of the S–Gini Index , 2002 .

[17]  Thomas B. Fomby,et al.  Studies in the economics of uncertainty : in honor of Josef Hadar , 1989 .

[18]  D. McFadden Testing for Stochastic Dominance , 1989 .

[19]  Ian Rongve,et al.  Estimation and Inference for Normative Inequality Indices , 1997 .

[20]  Harry J. Paarsch,et al.  Differences in Wage Distributions Between Canada and the United States: An Application of a Flexible Estimator of Distribution Functions in the Presence of Covariates , 2000 .

[21]  O. Linton,et al.  Consistent Testing for Stochastic Dominance Under General Sampling Schemes , 2003 .

[22]  Qiwei Yao,et al.  Approximating conditional distribution functions using dimension reduction , 2005 .

[23]  V. Chernozhukov,et al.  Inference on Counterfactual Distributions , 2009, 0904.0951.

[24]  Debopam Bhattacharya,et al.  Inference on inequality from household survey data , 2007 .

[25]  J. Dinardo,et al.  Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach , 1996 .

[26]  John A. Bishop,et al.  Lorenz Dominance and Welfare: Changes in the U.S. Distribution of Income, 1967-1986 , 1991 .

[27]  P. Lambert The Distribution and Redistribution of Income: A Mathematical Analysis , 1993 .

[28]  Garry F. Barrett,et al.  Consistent Nonparametric Tests for Lorenz Dominance , 2014 .

[29]  Thomas M. Stoker,et al.  Semiparametric Estimation of Index Coefficients , 1989 .

[30]  F. Bourguignon On the Measurement of Inequality , 2003 .

[31]  R. Davidson,et al.  Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality , 1998 .

[32]  Stephen G. Donald,et al.  Consistent Tests for Stochastic Dominance , 2003 .