Mixed-frequency quantile regressions to forecast value-at-risk and expected shortfall

[1]  Wei Kuang Oil tail-risk forecasts: from financial crisis to COVID-19 , 2022, Risk Management.

[2]  Qifa Xu,et al.  Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model , 2021 .

[3]  Yudong Wang,et al.  Macroeconomic uncertainty and expected shortfall (and value at risk): a new dynamic semiparametric model , 2021, Quantitative Finance.

[4]  L. Petrella,et al.  Forecasting VaR and ES using a joint quantile regression and implications in portfolio allocation , 2021, 2106.06518.

[5]  Xinyu Wang,et al.  Quantile-based GARCH-MIDAS: Estimating value-at-risk using mixed-frequency information , 2021 .

[6]  G. Gallo,et al.  Choosing the frequency of volatility components within the Double Asymmetric GARCH–MIDAS–X model , 2021 .

[7]  Yun Qin,et al.  Asymmetric effects of geopolitical risks on energy returns and volatility under different market conditions , 2020 .

[8]  Emese Lazar,et al.  Forecasting risk measures using intraday data in a generalized autoregressive score framework , 2020 .

[9]  Feng Ma,et al.  Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models , 2020 .

[10]  Yaojie Zhang,et al.  Geopolitical risk and oil volatility: A new insight , 2019, Energy Economics.

[11]  James W. Taylor Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution , 2019 .

[12]  Valentina Raponi,et al.  Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress , 2018, J. Multivar. Anal..

[13]  R. Gerlach,et al.  Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures , 2018, International Journal of Forecasting.

[14]  Matteo Iacoviello,et al.  Measuring Geopolitical Risk , 2018, International Finance Discussion Papers.

[15]  T. Singh,et al.  The Macroeconomic Determinants of Commodity Futures Volatility: The Evidence from Chinese and Indian Markets , 2017, SSRN Electronic Journal.

[16]  Antonello Maruotti,et al.  Multiple risk measures for multivariate dynamic heavy–tailed models , 2017 .

[17]  Libo Yin,et al.  Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model , 2017 .

[18]  Sebastian Bayer Combining Value-at-Risk Forecasts Using Penalized Quantile Regressions , 2017, Econometrics and Statistics.

[19]  Guodong Li,et al.  Hybrid quantile regression estimation for time series models with conditional heteroscedasticity , 2016, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[20]  E. Ghysels,et al.  Estimating MIDAS Regressions via OLS with Polynomial Parameter Profiling , 2016, Econometrics and Statistics.

[21]  Esther Ruiz,et al.  Frontiers in VaR forecasting and backtesting , 2016 .

[22]  Harald Kinateder Basel II Versus III: A Comparative Assessment of Minimum Capital Requirements for Internal Model Approaches , 2016 .

[23]  Fedya Telmoudi,et al.  Consistent Estimation of the Value at Risk When the Error Distribution of the Volatility Model is Misspecified , 2016 .

[24]  Christian Conrad,et al.  Anticipating Long-Term Stock Market Volatility: ANTICIPATING LONG-TERM STOCK MARKET VOLATILITY , 2015 .

[25]  Johanna F. Ziegel,et al.  Higher order elicitability and Osband’s principle , 2015, 1503.08123.

[26]  E. D. Bernardino,et al.  On multivariate extensions of the conditional Value-at-Risk measure , 2015 .

[27]  R. Lillo,et al.  A directional multivariate value at risk , 2015, 1502.00908.

[28]  Christian Conrad,et al.  Anticipating Long-Term Stock Market Volatility , 2014 .

[29]  Sangyeol Lee,et al.  Quantile Regression for Location‐Scale Time Series Models with Conditional Heteroscedasticity , 2014, 1401.0688.

[30]  Jozef Baruník,et al.  Semiparametric Conditional Quantile Models for Financial Returns and Realized Volatility , 2013, 1308.4276.

[31]  Eric Ghysels,et al.  Stock Market Volatility and Macroeconomic Fundamentals , 2013, Review of Economics and Statistics.

[32]  Sangyeol Lee,et al.  Quantile Regression Estimator for GARCH Models , 2013 .

[33]  Moorad Choudhry Volatility and Correlation , 2012 .

[34]  Michael McAleer,et al.  Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range , 2011 .

[35]  Roger Koenker,et al.  Conditional Quantile Estimation for Generalized Autoregressive Conditional Heteroscedasticity Models , 2009 .

[36]  Jeremy Berkowitz,et al.  Evaluating Value-at-Risk Models with Desk-Level Data , 2007, Manag. Sci..

[37]  Rossen Valkanov,et al.  MIDAS Regressions: Further Results and New Directions , 2006 .

[38]  Sean D. Campbell A review of backtesting and backtesting procedures , 2005 .

[39]  R. Engle,et al.  A Multiple Indicators Model for Volatility Using Intra-Daily Data , 2003 .

[40]  Simone Manganelli,et al.  Value at Risk Models in Finance , 2001, SSRN Electronic Journal.

[41]  D. Tasche,et al.  Expected Shortfall: a natural coherent alternative to Value at Risk , 2001, cond-mat/0105191.

[42]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[43]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[44]  Andrew J. Patton,et al.  What good is a volatility model? , 2001 .

[45]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[46]  R. Koenker,et al.  Goodness of Fit and Related Inference Processes for Quantile Regression , 1999 .

[47]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[48]  Roger Koenker,et al.  Conditional Quantile Estimation and Inference for Arch Models , 1996, Econometric Theory.

[49]  D. Hendricks,et al.  Evaluation of Value-at-Risk Models Using Historical Data , 1996 .

[50]  Paul H. Kupiec,et al.  Techniques for Verifying the Accuracy of Risk Measurement Models , 1995 .

[51]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[52]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[53]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[54]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[55]  Zhijie Xiao,et al.  Quantile Estimation of Regression Models with GARCH-X Errors , 2021 .

[56]  Christian Conrad,et al.  Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models , 2020 .

[57]  G. Gallo,et al.  On the asymmetric impact of macro–variables on volatility , 2019, Economic Modelling.

[58]  Peter F. CHRISTOFFERSENti EVALUATING INTERVAL FORECASTS , 2016 .

[59]  Dennis Kristensen,et al.  Semiparametric Multiplicative GARCH-X Model: Adopting Economic Variables To Explain Volatility , 2015 .

[60]  Vladimir Filimonov,et al.  On the Modeling of Financial Time Series , 2015 .

[61]  Daniel Peña,et al.  Estimating GARCH volatility in the presence of outliers , 2012 .

[62]  M Marconi,et al.  Distribution of Quantiles in Samples from a Bivariate Population , 2010 .

[63]  Sergey Sarykalin,et al.  Value-at-Risk vs. Conditional Value-at-Risk in Risk Management and Optimization , 2008 .

[64]  R. Koenker,et al.  Regression Quantiles , 2007 .

[65]  F. Diebold,et al.  VOLATILITY AND CORRELATION FORECASTING , 2006 .

[66]  D. Tasche,et al.  A Appendix : Subadditivity of Expected Shortfall , 2002 .

[67]  J. Wooldridge,et al.  Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances , 1992 .

[68]  Peter Christoffersen,et al.  Série Scientifique Scientific Series Estimation Risk in Financial Risk Management , 2022 .