Solving the Symmetric Tridiagonal Eigenproblem Using MPI/OpenMP Hybrid Parallelization

We present a hybrid MPI/OpenMP parallel implementation for the eigenvalues of symmetric tridiagonal matrices on cluster of SMP’s environments. The algorithm is based on a divide-and-conquer method which uses the split-merge technique and Laguerre’s iteration. We study two different implementations of the algorithm: one based on MPI and the other based on a hybrid parallel paradigm with MPI/OpenMP. We take a coarse grain OpenMP approach to parallel implementation for solving the eigenvalues of symmetric tridiagonal submatrices within a SMP node. And dynamic work sharing is used in Laguerre’s iterations. This has two effects: first, the amount of synchronization has been reduced; secondly, this could have an effect on the load balance. In addition, we analyze the communication overhead on two different implementations. An experimental analysis on the DeepComp 6800 shows the hybrid algorithm performs good scalability.

[1]  R. Pavani,et al.  A distributed divide-and-conquer approach to the paralle tridiagonal symmetric eigenvalue problem , 1995, HPCN Europe.

[2]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[3]  D. S. Henty,et al.  Performance of Hybrid Message-Passing and Shared-Memory Parallelism for Discrete Element Modeling , 2000, ACM/IEEE SC 2000 Conference (SC'00).

[4]  Zhonggang Zeng,et al.  The Laguerre Iteration in Solving the Symmetric Tridiagonal Eigenproblem, Revisited , 1994, SIAM J. Sci. Comput..

[5]  Jack J. Dongarra,et al.  A fully parallel algorithm for the symmetric eigenvalue problem , 1985, PPSC.

[6]  Liu Wei The concept of node-oriented speedup on SMP cluster , 2000 .

[7]  B. Parlett,et al.  Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices , 2004 .

[8]  Xian-He Sun,et al.  Parallel Homotopy Algorithm for the Symmetric Tridiagonal Eigenvalue Problem , 1991, SIAM J. Sci. Comput..

[9]  Franck Cappello,et al.  MPI versus MPI+OpenMP on the IBM SP for the NAS Benchmarks , 2000, ACM/IEEE SC 2000 Conference (SC'00).

[10]  J. Cuppen A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .

[11]  George Em Karniadakis,et al.  Parallel benchmarks of turbulence in complex geometries , 1996 .

[12]  R.D. Loft,et al.  Terascale Spectral Element Dynamical Core for Atmospheric General Circulation Models , 2001, ACM/IEEE SC 2001 Conference (SC'01).

[13]  David J. Kuck,et al.  A Parallel QR Algorithm for Symmetric Tridiagonal Matrices , 1977, IEEE Transactions on Computers.

[14]  Philip K. McKinley,et al.  A Scalable Eigenvalue Solver for Symmetric Tridiagonal Matrices , 1995, Parallel Comput..

[15]  Peter Arbenz,et al.  A parallel implementation of the symmetric tridiagonal QR algorithm , 1992, [Proceedings 1992] The Fourth Symposium on the Frontiers of Massively Parallel Computation.

[16]  Inderjit S. Dhillon,et al.  Application of a New Algorithm for the Symmetric Eigenproblem to Computational Quantum Chemistry , 1997, PPSC.

[17]  Zeki Demirbilek,et al.  Dual-Level Parallel Analysis of Harbor Wave Response Using MPI and OpenMP , 2000, Int. J. High Perform. Comput. Appl..

[18]  Suchuan Dong,et al.  Dual-level parallelism for high-order CFD methods , 2004, Parallel Comput..

[19]  Le N. Ly,et al.  Coastal Ocean Modeling of the U.S. West Coast with Multiblock Grid and Dual-Level Parallelism , 2001, ACM/IEEE SC 2001 Conference (SC'01).