PTF12os and iPTF13bvn. Two stripped-envelope supernovae from low-mass progenitors in NGC 5806

We investigate two stripped-envelope supernovae (SNe) discovered in the nearby galaxy NGC 5806 by the (i)PTF. These SNe, designated PTF12os/SN 2012P and iPTF13bvn, exploded at a similar distance from the host-galaxy center. We classify PTF12os as a Type IIb SN based on our spectral sequence; iPTF13bvn has previously been classified as Type Ib having a likely progenitor with zero age main sequence (ZAMS) mass below ~17 solar masses. Our main objective is to constrain the explosion parameters of iPTF12os and iPTF13bvn, and to put constraints on the SN progenitors. We present comprehensive datasets on the SNe, and introduce a new reference-subtraction pipeline (FPipe) currently in use by the iPTF. We perform a detailed study of the light curves (LCs) and spectral evolution of the SNe. The bolometric LCs are modeled using the hydrodynamical code HYDE. We use nebular models and late-time spectra to constrain the ZAMS mass of the progenitors. We perform image registration of ground-based images of PTF12os to archival HST images of NGC 5806 to identify a potential progenitor candidate. Our nebular spectra of iPTF13bvn indicate a low ZAMS mass of ~12 solar masses for the progenitor. The late-time spectra of PTF12os are consistent with a ZAMS mass of ~15 solar masses. We successfully identify a progenitor candidate to PTF12os using archival HST images. This source is consistent with being a cluster of massive stars. Our hydrodynamical modeling suggests that the progenitor of PTF12os had a compact He core with a mass of 3.25 solar masses, and that 0.063 solar masses of strongly mixed 56Ni was synthesized. Spectral comparisons to the Type IIb SN 2011dh indicate that the progenitor of PTF12os was surrounded by a hydrogen envelope with a mass lower than 0.02 solar masses. We also find tentative evidence that the progenitor of iPTF13bvn could have been surrounded by a small amount of hydrogen.

[1]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[2]  A. Horesh,et al.  A Search for the Progenitor of Supernova PTF12os (PSN J14595904+0153251) , 2012 .

[3]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[4]  D. Fox,et al.  PTF12os / PSN J14595904+0153251 is a Type IIb Supernova , 2012 .

[5]  A. Filippenko,et al.  Berkeley Supernova Ia Program – II. Initial analysis of spectra obtained near maximum brightness , 2012, 1202.2129.

[6]  E. Stanway,et al.  Spectral population synthesis including massive binaries , 2009, 0908.1386.

[7]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[8]  R. Kotak,et al.  The Type IIb SN 2011dh: Two years of observations and modelling of the lightcurves , 2014, 1408.0731.

[9]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[10]  S. Smartt,et al.  The Disappearance of the Progenitors of Supernovae 1993J and 2003gd , 2009, Science.

[11]  Bruce C. Bigelow,et al.  FIRE: A Facility Class Near-Infrared Echelle Spectrometer for the Magellan Telescopes , 2013 .

[12]  K. Nomoto,et al.  iPTF13bvn: THE FIRST EVIDENCE OF A BINARY PROGENITOR FOR A TYPE Ib SUPERNOVA , 2014, 1403.7288.

[13]  Z. Cano A new method for estimating the bolometric properties of Ibc supernovae , 2013, 1306.1488.

[14]  Max Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[15]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[16]  J. Sollerman,et al.  A metallicity study of 1987A-like supernova host galaxies , 2013, 1308.5545.

[17]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2009 .

[18]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[19]  H. Courtois,et al.  COSMICFLOWS-2: THE DATA , 2013, 1307.7213.

[20]  J. Prochaska,et al.  An empirical relation between sodium absorption and dust extinction , 2012, 1206.6107.

[21]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[22]  O. Benvenuto,et al.  A BINARY PROGENITOR FOR THE TYPE IIb SUPERNOVA 2011dh IN M51 , 2012, 1207.5807.

[23]  E. Ofek,et al.  SEARCH FOR PRECURSOR ERUPTIONS AMONG TYPE IIB SUPERNOVAE , 2015, 1508.04775.

[24]  D. A. García-Hernández,et al.  THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.

[25]  Puragra Guhathakurta,et al.  Supernovae in Low-Redshift Galaxy Clusters: Observations by the Wise Observatory Optical Transient Search (WOOTS) , 2007, 0711.0808.

[26]  R. Kirshner,et al.  Do spectra improve distance measurements of Type Ia supernovae , 2010, 1012.0005.

[27]  J. Bloom,et al.  Keck and European Southern Observatory Very Large Telescope View of the Symmetry of the Ejecta of the XRF/SN 2006aj , 2007 .

[28]  T. Contini,et al.  Oxygen and nitrogen abundances in nearby galaxies. Correlations between oxygen abundance and macroscopic properties , 2004 .

[29]  Paul S. Smith,et al.  Spectropolarimetry of SN 2011dh in M51: geometric insights on a Type IIb supernova progenitor and explosion , 2015, 1506.08844.

[30]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[31]  P. Chandra,et al.  UNCOVERING THE PUTATIVE B-STAR BINARY COMPANION OF THE SN 1993J PROGENITOR , 2014, 1405.4863.

[32]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[33]  C. Georgy,et al.  Progenitors of supernova Ibc: a single Wolf-Rayet star as the possible progenitor of the SN Ib iPTF13bvn , 2013, 1307.8434.

[34]  Peter E. Nugent,et al.  DISCOVERY, PROGENITOR AND EARLY EVOLUTION OF A STRIPPED ENVELOPE SUPERNOVA iPTF13bvn , 2013, 1307.1470.

[35]  J. Prieto,et al.  SUPERNOVA 2010as: THE LOWEST-VELOCITY MEMBER OF A FAMILY OF FLAT-VELOCITY TYPE IIb SUPERNOVAE , 2014, 1407.6711.

[36]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[37]  H. Kuncarayakti,et al.  A BLUE POINT SOURCE AT THE LOCATION OF SUPERNOVA 2011DH , 2014, 1409.0700.

[38]  R. Kotak,et al.  THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR , 2012, 1207.5975.

[39]  P. Brown,et al.  THE YOUNG, MASSIVE, STAR CLUSTER SANDAGE-96 AFTER THE EXPLOSION OF SUPERNOVA 2004dj IN NGC 2403 , 2008, 0812.1589.

[40]  E. Ofek,et al.  THE PROGENITOR OF SUPERNOVA 2011dh/PTF11eon IN MESSIER 51 , 2011, 1106.2897.

[41]  A. V. Tutukov,et al.  On the evolution of close binaries with components of initial mass between 3 solar masses and 12 solar masses , 1985 .

[42]  Adam A. Miller,et al.  DISAPPEARANCE OF THE PROGENITOR OF SUPERNOVA iPTF13bvn , 2016, 1604.06821.

[43]  E. Nakar,et al.  WHAT CAN WE LEARN FROM THE RISING LIGHT CURVES OF RADIOACTIVELY POWERED SUPERNOVAE? , 2012, 1210.3032.

[44]  M. Baes,et al.  Binary progenitor models of type IIb supernovae , 2011, 1102.1732.

[45]  J. Máız-Apellániz CHORIZOS : a CHi-square cOde for parameteRized modelIng and characteriZation of phOtometry and Spectrophotometry , 2004 .

[46]  J. Ma'iz-Apell'aniz CHORIZOS: A χ2 Code for Parameterized Modeling and Characterization of Photometry and Spectrophotometry , 2004 .

[47]  J. Maund,et al.  The disappearance of the helium-giant progenitor of the Type Ib supernova iPTF13bvn and constraints on its companion , 2016, 1604.05050.

[48]  S. Smartt,et al.  Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh , 2014, 1408.0732.

[49]  G. Anupama,et al.  Optical observations of the fast declining Type Ib supernova iPTF13bvn , 2014, 1409.2739.

[50]  H. Courtois,et al.  THE EXTRAGALACTIC DISTANCE DATABASE , 2009, 0902.3668.

[51]  J. Wheeler,et al.  Analysis of late-time light curves of Type IIb, Ib and Ic supernovae , 2014, 1411.5975.

[52]  R. Kotak,et al.  Optical and near-infrared observations of SN 2011dh – The first 100 days , 2013, 1305.1851.

[53]  R. Kotak,et al.  On the triple peaks of SNHunt248 in NGC 5806 , 2015, 1508.04730.

[54]  Ronnie Killough,et al.  The Swift Ultra-Violet/Optical Telescope , 2001 .

[55]  S. B. Cenko,et al.  The Rise and Fall of the Type Ib Supernova iPTF13bvn Not a Massive Wolf-Rayet Star , 2014, 1403.6708.

[56]  G. Leloudas,et al.  Early-time light curves of Type Ib/c supernovae from the SDSS-II Supernova Survey , 2014, 1408.4084.

[57]  S. Woosley,et al.  TYPE Ib/c SUPERNOVAE IN BINARY SYSTEMS. I. EVOLUTION AND PROPERTIES OF THE PROGENITOR STARS , 2010, 1004.0843.

[58]  E. Pian,et al.  MULTI-WAVELENGTH OBSERVATIONS OF SUPERNOVA 2011ei: TIME-DEPENDENT CLASSIFICATION OF TYPE IIb AND Ib SUPERNOVAE AND IMPLICATIONS FOR THEIR PROGENITORS , 2012, 1207.2152.

[59]  David Arnett,et al.  Radiation Dynamics, Envelope Ejection, and Supernova Light Curves , 1977 .

[60]  P. Brown,et al.  SN Hunt 248: a super-Eddington outburst from a massive cool hypergiant , 2014, 1407.4681.

[61]  Andrew E. Dolphin,et al.  WFPC2 Stellar Photometry with HSTphot , 2000, astro-ph/0006217.

[62]  J. Maund,et al.  Did the progenitor of SN 2011dh have a binary companion , 2015, 1509.06018.

[63]  D. Milisavljevic,et al.  LINE IDENTIFICATIONS OF TYPE I SUPERNOVAE: ON THE DETECTION OF Si II FOR THESE HYDROGEN-POOR EVENTS , 2015, 1505.06645.

[64]  P. Mazzali,et al.  How much H and He is ‘hidden’ in SNe Ib/c? – I. Low-mass objects , 2012, 1201.1506.

[65]  N. Morrell,et al.  Nebular phase observations of the type-Ib supernova iPTF13bvn favour a binary progenitor , 2015, 1504.01473.

[66]  John A. Nousek,et al.  ULTRAVIOLET LIGHT CURVES OF SUPERNOVAE WITH THE SWIFT ULTRAVIOLET/OPTICAL TELESCOPE , 2009 .

[67]  S. Woosley,et al.  Core-collapse explosions of Wolf–Rayet stars and the connection to Type IIb/Ib/Ic supernovae , 2011, 1102.5160.

[68]  O. Graur,et al.  ANALYZING THE LARGEST SPECTROSCOPIC DATA SET OF STRIPPED SUPERNOVAE TO IMPROVE THEIR IDENTIFICATIONS AND CONSTRAIN THEIR PROGENITORS , 2015, 1510.08049.

[69]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[70]  Oswald H. W. Siegmund,et al.  UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XVIII , 2007 .

[71]  S. Smartt,et al.  Possible binary progenitors for the Type Ib supernova iPTF13bvn , 2014, 1408.4142.

[72]  J. Maund,et al.  Spectropolarimetry of the Type Ib Supernova iPTF 13bvn: revealing the complex explosion geometry of a stripped-envelope core-collapse supernova , 2015, 1510.02492.

[73]  Nathan Smith Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014 .

[74]  David Polishook,et al.  SN 2011dh: DISCOVERY OF A TYPE IIb SUPERNOVA FROM A COMPACT PROGENITOR IN THE NEARBY GALAXY M51 , 2011, 1106.3551.

[75]  Sung-Chul Yoon Evolutionary Models for Type Ib/c Supernova Progenitors , 2015, Publications of the Astronomical Society of Australia.

[76]  David Bersier,et al.  Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae , 2014, 1406.3667.

[77]  Marco Bonati,et al.  The Automated Palomar 60 Inch Telescope , 2006, astro-ph/0608323.

[78]  L. D. J. Hillier Distance determinations using Type II supernovae and the expanding photosphere method , 2005, astro-ph/0505465.

[79]  O. Ezhkova,et al.  Oxygen and nitrogen abundances of H ii regions in six spiral galaxies , 2012, 1205.3910.

[80]  S. Woosley,et al.  On the nature of supernovae Ib and Ic , 2012, 1205.5349.

[81]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[82]  D. Poznanski,et al.  Low‐resolution sodium D absorption is a bad proxy for extinction , 2011, 1106.1469.

[83]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[84]  S. E. Woosley,et al.  Nucleosynthesis and remnants in massive stars of solar metallicity , 2007 .

[85]  Princeton,et al.  The Sloan Digital Sky Survey View of the Palomar-Green Bright Quasar Survey , 2005, astro-ph/0506022.

[86]  R. Kirshner,et al.  CORE-COLLAPSE SUPERNOVAE AND HOST GALAXY STELLAR POPULATIONS , 2011, 1110.1377.

[87]  E. Ofek,et al.  The Type IIb SN 2008ax: spectral and light curve evolution , 2008, 0805.1914.

[88]  S. Valenti,et al.  The He-rich stripped-envelope core-collapse supernova 2008ax , 2011, 1101.1824.

[89]  R. Kotak,et al.  The Type Ic SN 2007gr: a census of the ejecta from late-time optical–infrared spectra , 2010, 1006.4259.