Modelling Variance Heterogeneity: Residual Maximum Likelihood and Diagnostics

The assumption of equal variance in the normal regression model is not always appropriate. To attempt to eliminate unequal variance a transformation is often used but if the transformation is not successful, or the variances are of intrinsic interest, it may be necessary to model the variances in some way. We consider the normal regression model when log-linear dependence of the variances on explanatory variables is suspected. Detection of the dependence, estimation and tests of homogeneity based on full and residual maximum likelihood are discussed as are regression diagnostic methods based on case deletion and log-likelihood displacement

[1]  Alan H. Dorfman,et al.  Sound Confidence Intervals in the Heteroscedastic Linear Model Through Releveraging , 1991 .

[2]  Gordon K. Smyth,et al.  Generalized linear models with varying dispersion , 1989 .

[3]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .

[4]  A. Verbyla,et al.  A CONDITIONAL DERIVATION OF RESIDUAL MAXIMUM LIKELIHOOD , 1990 .

[5]  Yuzo Honda,et al.  A size correction to the Lagrange multiplier test for heteroskedasticity , 1988 .

[6]  M. Evans,et al.  A further class of tests for heteroscedasticity , 1988 .

[7]  D. Pregibon Logistic Regression Diagnostics , 1981 .

[8]  D. Harville Bayesian inference for variance components using only error contrasts , 1974 .

[9]  D. M. Cooper,et al.  Note concerning the Akaike and Hannan estimation procedures for an autoregressive-moving average processA note on the estimation of the parameters of the autoregressive-moving average process , 1977 .

[10]  S. Weisberg,et al.  Diagnostics for heteroscedasticity in regression , 1983 .

[11]  D. A. Williams,et al.  Generalized Linear Model Diagnostics Using the Deviance and Single Case Deletions , 1987 .

[12]  Robin Thompson,et al.  A Note on the Estimation of the Parameters of the Autoregressive-Moving Average Process , 1977 .

[13]  M. Aitkin Modelling variance heterogeneity in normal regression using GLIM , 1987 .

[14]  P. Harris,et al.  An asymptotic expansion for the null distribution of the efficient score statistic , 1985 .

[15]  T. Breurch,et al.  A simple test for heteroscedasticity and random coefficient variation (econometrica vol 47 , 1979 .

[16]  David R. Cox,et al.  A time series illustration of approximate conditional likelihood , 1989 .

[17]  G. Box An analysis of transformations (with discussion) , 1964 .

[18]  Sanford Weisberg,et al.  A note on an alternative outlier model , 1982 .

[19]  George E. P. Box,et al.  Dispersion Effects From Fractional Designs , 1986 .

[20]  R. Park Estimation with Heteroscedastic Error Terms , 1966 .

[21]  A. Harvey Estimating Regression Models with Multiplicative Heteroscedasticity , 1976 .

[22]  S. Weisberg Plots, transformations, and regression , 1985 .

[23]  D. Ruppert,et al.  Transformation and Weighting in Regression , 1988 .

[24]  R. Thompson A Note on Restricted Maximum Likelihood Estimation with an Alternative Outlier Model , 1985 .

[25]  T. A. Ryan,et al.  Minitab Student Handbook , 1979 .

[26]  Anthony N. Pettitt,et al.  Case-Weighted Measures of Influence for Proportional Hazards Regression , 1989 .

[27]  W. Douglas Stirling Heteroscedastic Models and an Application to Block Designs , 1985 .

[28]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .