Operators with Singular Continuous Spectrum: I. General Operators
暂无分享,去创建一个
[1] B. Simon,et al. OPERATORS WITH SINGULAR CONTINUOUS SPECTRUM : II , 1996 .
[2] B. Simon,et al. Stochastic Schrödinger operators and Jacobi matrices on the strip , 1988 .
[3] N. Ushiroya,et al. One-dimensional Schrödinger operators with random decaying potentials , 1988 .
[4] B. Simon,et al. Singular continuous spectrum under rank one perturbations and localization for random hamiltonians , 1986 .
[5] B. Simon. Localization in general one dimensional random systems, I. Jacobi matrices , 1985 .
[6] H. Kunz,et al. One-dimensional wave equations in disordered media , 1983 .
[7] B. Simon. Some jacobi matrices with decaying potential and dense point spectrum , 1982 .
[8] B. Simon,et al. Singular continuous spectrum for a class of almost periodic Jacobi matrices , 1982 .
[9] T. Zamfirescu. Most Monotone Functions are Singular , 1981 .
[10] L. Pastur,et al. A pure point spectrum of the stochastic one-dimensional schrödinger operator , 1977 .
[11] P. Deift,et al. On the decoupling of finite singularities from the question of asymptotic completeness in two body quantum systems , 1976 .
[12] M. Reed. Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .
[13] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[14] Tosio Kato. Perturbation theory for linear operators , 1966 .
[15] S. Kuroda. On a theorem of Weyl-von Neumann , 1958 .
[16] Paul R. Halmos,et al. In General a Measure Preserving Transformation is Mixing , 1944 .
[17] J. Neumann,et al. Charakterisierung des Spektrums eines Integraloperators , 1935 .
[18] H. Weyl,et al. Über beschränkte quadratische formen, deren differenz vollstetig ist , 1909 .