Operators with Singular Continuous Spectrum: I. General Operators

The Baire category theorem implies that the family, F, of dense sets G_ δ in fixed metric space, X, is a candidate for generic sets since it is closed under countable intersections; and if X is perfect (has no isolated point), then A ∈ F has uncountable intersections with any open ball in X.

[1]  B. Simon,et al.  OPERATORS WITH SINGULAR CONTINUOUS SPECTRUM : II , 1996 .

[2]  B. Simon,et al.  Stochastic Schrödinger operators and Jacobi matrices on the strip , 1988 .

[3]  N. Ushiroya,et al.  One-dimensional Schrödinger operators with random decaying potentials , 1988 .

[4]  B. Simon,et al.  Singular continuous spectrum under rank one perturbations and localization for random hamiltonians , 1986 .

[5]  B. Simon Localization in general one dimensional random systems, I. Jacobi matrices , 1985 .

[6]  H. Kunz,et al.  One-dimensional wave equations in disordered media , 1983 .

[7]  B. Simon Some jacobi matrices with decaying potential and dense point spectrum , 1982 .

[8]  B. Simon,et al.  Singular continuous spectrum for a class of almost periodic Jacobi matrices , 1982 .

[9]  T. Zamfirescu Most Monotone Functions are Singular , 1981 .

[10]  L. Pastur,et al.  A pure point spectrum of the stochastic one-dimensional schrödinger operator , 1977 .

[11]  P. Deift,et al.  On the decoupling of finite singularities from the question of asymptotic completeness in two body quantum systems , 1976 .

[12]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[13]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[14]  Tosio Kato Perturbation theory for linear operators , 1966 .

[15]  S. Kuroda On a theorem of Weyl-von Neumann , 1958 .

[16]  Paul R. Halmos,et al.  In General a Measure Preserving Transformation is Mixing , 1944 .

[17]  J. Neumann,et al.  Charakterisierung des Spektrums eines Integraloperators , 1935 .

[18]  H. Weyl,et al.  Über beschränkte quadratische formen, deren differenz vollstetig ist , 1909 .