A putative loop connection between VTA dopamine neurons and nucleus accumbens encodes positive valence to compensate for hunger

[1]  G. Bi,et al.  Distinct reward processing by subregions of the nucleus accumbens. , 2023, Cell reports.

[2]  Xiaoshuang Zhang,et al.  D1 receptor-expressing neurons in ventral tegmental area alleviate mouse anxiety-like behaviors via glutamatergic projection to lateral septum , 2022, Molecular Psychiatry.

[3]  Camarin E. Rolle,et al.  Pilot study of responsive nucleus accumbens deep brain stimulation for loss-of-control eating , 2022, Nature Medicine.

[4]  Chang-lin Li,et al.  A circuit from lateral septum neurotensin neurons to tuberal nucleus controls hedonic feeding , 2022, Molecular Psychiatry.

[5]  M. Krashes,et al.  Acts of appetite: neural circuits governing the appetitive, consummatory, and terminating phases of feeding , 2022, Nature Metabolism.

[6]  Yanlin He,et al.  A D2 to D1 shift in dopaminergic inputs to midbrain 5-HT neurons causes anorexia in mice , 2022, Nature Neuroscience.

[7]  Lei Xiao,et al.  Morpho-Electric Properties and Diversity of Oxytocin Neurons in Paraventricular Nucleus of Hypothalamus in Female and Male Mice , 2022, The Journal of Neuroscience.

[8]  Yiming Zhou,et al.  A distinct D1-MSN subpopulation down-regulates dopamine to promote negative emotional state , 2021, Cell Research.

[9]  D. Mahadevia,et al.  Dopamine promotes aggression in mice via ventral tegmental area to lateral septum projections , 2021, Nature Communications.

[10]  J. Betley,et al.  Reverse-translational identification of a cerebellar satiation network , 2021, Nature.

[11]  M. Horiuchi,et al.  Refeeding activates neurons in the dorsomedial hypothalamus to inhibit food intake and promote positive valence , 2021, Molecular metabolism.

[12]  Feng Liu,et al.  5-HT recruits distinct neurocircuits to inhibit hunger-driven and non-hunger-driven feeding , 2021, Molecular Psychiatry.

[13]  Y. Kupchik,et al.  The role of the nucleus accumbens and ventral pallidum in feeding and obesity , 2021, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[14]  Yong Xu,et al.  A hindbrain dopaminergic neural circuit prevents weight gain by reinforcing food satiation , 2021, Science Advances.

[15]  R. Malenka,et al.  Input-specific modulation of murine nucleus accumbens differentially regulates hedonic feeding , 2021, Nature Communications.

[16]  B. Popkin,et al.  Individuals with obesity and COVID‐19: A global perspective on the epidemiology and biological relationships , 2020, Obesity reviews : an official journal of the International Association for the Study of Obesity.

[17]  Christopher M. Mazzone,et al.  High fat food biases hypothalamic and mesolimbic expression of consummatory drives , 2020, Nature Neuroscience.

[18]  K. Hajifathalian,et al.  Obesity is Associated with Worse Outcomes in COVID‐19: Analysis of Early Data from New York City , 2020, Obesity.

[19]  Huang-yuan Li,et al.  Ventral tegmental area GABAergic neurons induce anxiety-like behaviors and promote palatable food intake , 2020, Neuropharmacology.

[20]  JaneR . Taylor,et al.  Medial Nucleus Accumbens Projections to the Ventral Tegmental Area Control Food Consumption , 2020, The Journal of Neuroscience.

[21]  R. Wise,et al.  Control of food approach and eating by a GABAergic projection from lateral hypothalamus to dorsal pons , 2020, Proceedings of the National Academy of Sciences.

[22]  Brian Zingg,et al.  Synaptic Specificity and Application of Anterograde Transsynaptic AAV for Probing Neural Circuitry , 2020, The Journal of Neuroscience.

[23]  R. Wise,et al.  Dopamine and Addiction. , 2020, Annual review of psychology.

[24]  Ilana B. Witten,et al.  Specialized coding of sensory, motor, and cognitive variables in VTA dopamine neurons , 2019, Nature.

[25]  R. Malenka,et al.  Nucleus Accumbens Modulation in Reward and Aversion , 2019, Cold Spring Harbor symposia on quantitative biology.

[26]  Christina K. Kim,et al.  A Neural Circuit Mechanism for Encoding Aversive Stimuli in the Mesolimbic Dopamine System , 2019, Neuron.

[27]  Liqun Luo,et al.  Topological Organization of Ventral Tegmental Area Connectivity Revealed by Viral-Genetic Dissection of Input-Output Relations , 2019, Cell reports.

[28]  Mohammad Hosein Farzaei,et al.  Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017 , 2018, Lancet.

[29]  Karl Deisseroth,et al.  Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches , 2018, Nature Neuroscience.

[30]  Evan Z. Macosko,et al.  Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain , 2018, Cell.

[31]  M. Priest,et al.  Oxytocin functions as a spatiotemporal filter for excitatory synaptic inputs to VTA dopamine neurons , 2018, eLife.

[32]  S. Lammel,et al.  Nucleus Accumbens Subnuclei Regulate Motivated Behavior via Direct Inhibition and Disinhibition of VTA Dopamine Subpopulations , 2018, Neuron.

[33]  Mark A. Rossi,et al.  Overlapping Brain Circuits for Homeostatic and Hedonic Feeding. , 2018, Cell metabolism.

[34]  M. Luijendijk,et al.  Does activation of midbrain dopamine neurons promote or reduce feeding? , 2017, International Journal of Obesity.

[35]  A. Bonci,et al.  Circuit specificity in the inhibitory architecture of the VTA regulates cocaine-induced behavior , 2017, Nature Neuroscience.

[36]  T. Wadden,et al.  Mechanisms, Pathophysiology, and Management of Obesity , 2017, The New England journal of medicine.

[37]  Elyssa B. Margolis,et al.  Ventral tegmental area: cellular heterogeneity, connectivity and behaviour , 2017, Nature Reviews Neuroscience.

[38]  E. Roh,et al.  Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism , 2016, Experimental & Molecular Medicine.

[39]  R. Wise,et al.  Lateral hypothalamic circuits for feeding and reward , 2016, Nature Neuroscience.

[40]  Guillem R. Esber,et al.  Brief optogenetic inhibition of dopamine neurons mimics endogenous negative reward prediction errors , 2015, Nature Neuroscience.

[41]  C. Lüscher,et al.  Accumbal D1R Neurons Projecting to Lateral Hypothalamus Authorize Feeding , 2015, Neuron.

[42]  S. Sternson Hunger: The carrot and the stick , 2015, Molecular metabolism.

[43]  Zhiping P Pang,et al.  Endogenous Glucagon-like Peptide-1 Suppresses High-Fat Food Intake by Reducing Synaptic Drive onto Mesolimbic Dopamine Neurons. , 2015, Cell reports.

[44]  Liqun Luo,et al.  Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping , 2015, Cell.

[45]  S. Nakanishi,et al.  Aversive behavior induced by optogenetic inactivation of ventral tegmental area dopamine neurons is mediated by dopamine D2 receptors in the nucleus accumbens , 2014, Proceedings of the National Academy of Sciences.

[46]  K. Deisseroth,et al.  Medial prefrontal D1 dopamine neurons control food intake , 2014, Nature Neuroscience.

[47]  S. Ikemoto,et al.  Similar Roles of Substantia Nigra and Ventral Tegmental Dopamine Neurons in Reward and Aversion , 2014, The Journal of Neuroscience.

[48]  K. Deisseroth,et al.  Input-specific control of reward and aversion in the ventral tegmental area , 2012, Nature.

[49]  Jovi C. Y. Wong,et al.  Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake , 2012, The European journal of neuroscience.

[50]  Kelly R. Tan,et al.  GABA Neurons of the VTA Drive Conditioned Place Aversion , 2012, Neuron.

[51]  G. Stuber,et al.  Activation of VTA GABA Neurons Disrupts Reward Consumption , 2012, Neuron.

[52]  B. Swinburn,et al.  The global obesity pandemic: shaped by global drivers and local environments , 2011, The Lancet.

[53]  B. Roth,et al.  Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. , 2011, The Journal of clinical investigation.

[54]  P. Kenny Reward Mechanisms in Obesity: New Insights and Future Directions , 2011, Neuron.

[55]  M. Nicolelis,et al.  Remote Control of Neuronal Activity in Transgenic Mice Expressing Evolved G Protein-Coupled Receptors , 2009, Neuron.

[56]  S. Lammel,et al.  Unique Properties of Mesoprefrontal Neurons within a Dual Mesocorticolimbic Dopamine System , 2008, Neuron.

[57]  Charles R. Gerfen,et al.  Targeting Cre Recombinase to Specific Neuron Populations with Bacterial Artificial Chromosome Constructs , 2007, The Journal of Neuroscience.

[58]  Xiao-Bing Gao,et al.  Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. , 2006, The Journal of clinical investigation.

[59]  Xiao-Bing Gao,et al.  Leptin Receptor Signaling in Midbrain Dopamine Neurons Regulates Feeding , 2006, Neuron.

[60]  M. W. Schwartz,et al.  Central nervous system control of food intake and body weight , 2006, Nature.

[61]  B. Hoffer,et al.  Characterization of a mouse strain expressing Cre recombinase from the 3′ untranslated region of the dopamine transporter locus , 2006, Genesis.

[62]  R. Palmiter,et al.  Dopamine Production in the Caudate Putamen Restores Feeding in Dopamine-Deficient Mice , 2001, Neuron.

[63]  R. Palmiter,et al.  Feeding behavior in dopamine-deficient mice. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[64]  A. Kelley,et al.  Feeding induced by GABA(A) receptor stimulation within the nucleus accumbens shell: regional mapping and characterization of macronutrient and taste preference. , 1999, Behavioral neuroscience.

[65]  R. Palmiter,et al.  Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic , 1995, Cell.