Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach

A B S T R A C T This paper aims to provide a systematic overview of the state of the art in energy and resource efficiency increasing methods and techniques in the domain of discrete part manufacturing, with attention for the effectiveness of the available options. For this purpose a structured approach, distinguishing different system scale levels, is applied: starting from a unit process focus, respectively the multi-machine, factory, multi-facility and supply chain levels are covered. Determined by the research contributions reported in literature, the de facto focus of the paper is mainly on energy related aspects of manufacturing. Significant opportunities for systematic efficiency improving measures are identified and summarized in this area. 2012 CIRP.

[1]  P. Pearson,et al.  Input-output simulations of energy, environment, economy interactions in the UK , 1995 .

[2]  Terry J. Hendricks,et al.  Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery , 2006 .

[3]  T. Gutowski,et al.  Environmentally benign manufacturing: Observations from Japan, Europe and the United States , 2005 .

[4]  Majda Bastič,et al.  Incorporation of reverse logistics model into in-plant recycling process: A case of aluminium industry , 2006 .

[5]  Andrew Jarvis,et al.  Strategies for Minimum Energy Operation for Precision Machining , 2009 .

[6]  Matthias Holweg,et al.  The genealogy of lean production , 2007 .

[7]  Lin Yj,et al.  Development of Ecological Industrial Parks in China , 2004 .

[8]  I. Pashby,et al.  A review on the use of environmentally-friendly dielectric fluids in electrical discharge machining , 2004 .

[9]  Petter Solding,et al.  Using simulation for more sustainable production systems – methodologies and case studies , 2009 .

[10]  Dell K. Allen,et al.  Fundamental Principles of Manufacturing Processes , 1994 .

[11]  Zach G. Zacharia,et al.  DEFINING SUPPLY CHAIN MANAGEMENT , 2001 .

[12]  R. V. Berkel,et al.  Quantifying Sustainability Benefits of Industrial Symbioses , 2010 .

[13]  João Fernando Gomes de Oliveira,et al.  Development of Environmentally Friendly Fluid for CBN Grinding , 2006 .

[14]  D. V. Beers,et al.  Industrial Symbiosis in the Australian Minerals Industry: The Cases of Kwinana and Gladstone , 2007 .

[15]  Christoph Herrmann,et al.  Global manufacturing and the embodied energy of products , 2010 .

[16]  Faye Duchin,et al.  Input-Output Economics and Material Flows , 2009 .

[17]  Sami Kara,et al.  Embodied energy of manufacturing supply chains , 2011 .

[18]  Kay Hameyer,et al.  Assessment of Energy and Resource Consumption of Processes and Process Chains within the Automotive Sector , 2011 .

[19]  Paul Xirouchakis,et al.  A System for Resource Efficient Process Planning for Wire EDM , 2011 .

[20]  J. D. Risi Energy savings with compressed air , 1995 .

[21]  A. Bonneschky,et al.  Tools, die den Zusammenhang von Technik und Wirtschaftlichkeit nutzbar machen — Integration energiewirtschaftlicher Aspekte in Systeme der Produktionsplanung und -steuerung , 2006 .

[22]  Giuseppe Ingarao,et al.  Sustainability issues in sheet metal forming processes: an overview , 2011 .

[23]  Krassimir Dotchev,et al.  Recycling of polyamide 12 based powders in the laser sintering process , 2009 .

[24]  Jefferson de Oliveira Gomes,et al.  Saving Potential of Water for Foundry Sand Using Treated Coolant Water , 2011 .

[25]  Johan Stahre,et al.  Simulation-based sustainable manufacturing system design , 2008, 2008 Winter Simulation Conference.

[26]  Chris Yuan,et al.  A decision-based analysis of compressed air usage patterns in automotive manufacturing , 2006 .

[27]  J C Creyts,et al.  Use of extended exergy analysis to evaluate the environmental performance of machining processes , 1999 .

[28]  Dusan P. Sekulic,et al.  Balancing material and exergy flows for a PCB soldering process: Method and a case study , 2010, Proceedings of the 2010 IEEE International Symposium on Sustainable Systems and Technology.

[29]  Ruisheng Ng,et al.  Identifying Carbon Footprint Reduction Opportunities through Energy Measurements in Sheet Metal Part Manufacturing , 2011 .

[30]  Peter D. Blair,et al.  Input-Output Analysis , 2021 .

[31]  R Quinkertz,et al.  A scenario to optimise the energy demand of aluminium production depending on the recycling quota , 2001 .

[32]  Alexander Verl,et al.  A generic energy consumption model for decision making and energy efficiency optimisation in manufacturing , 2009 .

[33]  P. Sheng,et al.  Multi-Objective Process Planning in Environmentally Conscious Manufacturing: A Feature-Based Approach , 1995 .

[34]  A. Bejan Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture , 2002 .

[35]  Ted Sirkin,et al.  The cascade chain: A theory and tool for achieving resource sustainability with applications for product design , 1994 .

[36]  Agnes Pechmann,et al.  Optimizing Energy Costs by Intelligent Production Scheduling , 2011 .

[37]  Reimund Neugebauer,et al.  New Aspects of Energy Consumption Analysis in Assembly Processes and Equipment , 2012 .

[38]  Yasuo Suzuoki,et al.  Minimizing energy consumption in industries by cascade use of waste energy , 1999 .

[39]  C. N. Hewitt,et al.  The effect of trade between China and the UK on national and global carbon dioxide emissions , 2008 .

[40]  Christoph Herrmann,et al.  Process chain simulation to foster energy efficiency in manufacturing , 2009 .

[41]  Joost Duflou,et al.  Energy related environmental impact reduction opportunities in machine design: case study of a laser cutting machine , 2010 .

[42]  S. Kara,et al.  Electricity Metering and Monitoring in Manufacturing Systems , 2011 .

[43]  Wim Dewulf,et al.  Preliminary Environmental Assessment of Electrical Discharge Machining , 2011 .

[44]  Christoph Herrmann,et al.  Energy Efficiency Measures for the Design and Operation of Machine Tools: An Axiomatic Approach , 2011 .

[45]  Harry L. Brown,et al.  Second law analysis of industrial processes , 1980 .

[46]  Leon F. McGinnis,et al.  An economic and environmental framework for analyzing globally sourced auto parts packaging system , 2008 .

[47]  Bin Shui,et al.  The role of CO2 embodiment in US-China trade , 2006 .

[48]  David Dornfeld,et al.  Energy Consumption Characterization and Reduction Strategies for Milling Machine Tool Use , 2011 .

[49]  Elsa Henriques,et al.  A Life Cycle Engineering model for technology selection: a case study on plastic injection moulds for low production volumes , 2009 .

[50]  Arpad Horvath,et al.  Green Manufacturing and Sustainable Manufacturing Partnership Title Environmental Analysis of Milling Machine Tool Use in Various Manufacturing Environments , 2022 .

[51]  Peter Radgen,et al.  Energy system analysis is fertilizer complex – pinch analysis vs. Exergy analysis† , 1996 .

[52]  Ibrahim Dincer,et al.  Exergy: Energy, Environment and Sustainable Development , 2007 .

[53]  Wim Dewulf,et al.  Improvement Potential for Energy Consumption in Discrete Part Production Machines , 2007 .

[54]  Qinghua Zhu,et al.  Integrating green supply chain management into an embryonic eco-industrial development: a case study of the Guitang Group , 2004 .

[55]  Qinghua Zhu,et al.  Industrial Symbiosis in China: A Case Study of the Guitang Group , 2007 .

[56]  J. Larjola,et al.  Electricity from industrial waste heat using high-speed organic Rankine cycle (ORC) , 1995 .

[57]  Ch. Berg,et al.  Atlas schutzwürdiger Vegetationstypen der Schweiz., O. Hegg, C. Beguin, H. Zoller. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern (1993), 160 S. brosch., zahlr. Abb. und Farbtafeln, 27 lose Karten, 2 Deckfolien in Glanzkartonmappe. Preis nicht angegeben , 1996 .

[58]  Joost Duflou,et al.  Environmental Performance of Sheet Metal Working Processes , 2011 .

[59]  S. Melkote,et al.  An investigation of graphite nanoplatelets as lubricant in grinding , 2009 .

[60]  Jeffrey B Dahmus,et al.  Thermodynamic analysis of resources used in manufacturing processes. , 2009, Environmental science & technology.

[61]  Paul Xirouchakis,et al.  Evaluating the use phase energy requirements of a machine tool system , 2011 .

[62]  Morris A. Cohen,et al.  GLOBAL SUPPLY CHAINS: RESEARCH AND APPLICATIONS , 2009 .

[63]  John W. Sutherland,et al.  Material flows and environmental impacts of manufacturing systems via aggregated input–output models , 2007 .

[64]  Jean-Pierre Fleurial,et al.  Thermoelectric power generation materials: Technology and application opportunities , 2009 .

[65]  Wim Dewulf,et al.  Unit process impact assessment for discrete part manufacturing: A state of the art , 2010 .

[66]  Marian Chertow,et al.  INDUSTRIAL SYMBIOSIS: Literature and Taxonomy , 2000 .

[67]  Yousef S.H. Najjar,et al.  Recovery and utilization of waste heat , 1993 .

[68]  John R. Shook,et al.  Learning to See: Value Stream Mapping to Create Value and , 1998 .

[69]  S. G. Deshmukh,et al.  Supplier selection using fuzzy association rules mining approach , 2007 .

[70]  John W. Sutherland,et al.  A New Shop Scheduling Approach in Support of Sustainable Manufacturing , 2011 .

[71]  Athulan Vijayaraghavan,et al.  Automated energy monitoring of machine tools , 2010 .

[72]  C. Hendrickson,et al.  Using input-output analysis to estimate economy-wide discharges , 1995 .

[73]  Jacqueline M. Bloemhof,et al.  A Methodology for Assessing Eco-Efficiency in Logistics Networks , 2007, Eur. J. Oper. Res..

[74]  Sami Kara,et al.  Unit process energy consumption models for material removal processes , 2011 .

[75]  Wim Dewulf,et al.  Exergy Efficiency Definitions for Manufacturing Processes , 2011 .

[76]  Tina Dettmer,et al.  Using Jatropha Oil Based Metalworking Fluids in Machining Processes: A Functional and Ecological Life Cycle Evaluation , 2012 .

[77]  M. Chertow,et al.  Quantifying economic and environmental benefits of co-located firms. , 2005, Environmental science & technology.

[78]  Günther Seliger,et al.  Life cycle management of production facilities using semantic web technologies , 2010 .

[79]  Nasrudin Abd Rahim,et al.  A review on compressed-air energy use and energy savings , 2010 .

[80]  Jie Yu,et al.  A data enabled operation-based simulation for automotive assembly , 2008, 2008 Asia Simulation Conference - 7th International Conference on System Simulation and Scientific Computing.

[81]  H. D. Baehr,et al.  Thermodynamik : Grundlagen und technische Anwendungen , 1986 .

[82]  P. Sheng,et al.  An analytical approach for determining the environmental impact of machining processes , 1995 .

[83]  Shahin Rahimifard,et al.  Minimising Embodied Product Energy to support energy efficient manufacturing , 2010 .

[84]  Günther Seliger,et al.  Methodology for planning and operating energy-efficient production systems , 2011 .

[85]  Michael Overcash,et al.  Manufacturing unit process life cycle inventories (Uplci) , 2009, PerMIS.

[86]  Tina Dettmer,et al.  Coolants made of native ester - technical, ecological and cost assessment from a life cycle perspective , 2007 .

[87]  T. Brockhoff,et al.  Grind-Hardening: A Comprehensive View , 1999 .

[88]  Christoph Herrmann,et al.  An Investigation into Fixed Energy Consumption of Machine Tools , 2011 .

[89]  Vimal Dhokia,et al.  Energy efficient process planning for CNC machining , 2012 .

[90]  Christoph Herrmann,et al.  Energy oriented simulation of manufacturing systems - Concept and application , 2011 .

[91]  John W. Sutherland,et al.  Dry Machining and Minimum Quantity Lubrication , 2004 .

[92]  G. Psacharopoulos Overview and methodology , 1991 .

[93]  Eberhard Abele,et al.  Analyzing Energy Consumption of Machine Tool Spindle Units and Identification of Potential for Improvements of Efficiency , 2011 .

[94]  J. Breuil,et al.  Input-Output Analysis and Pollutant Emissions in France , 1992 .

[95]  J. E. Ahern,et al.  The exergy method of energy systems analysis , 1980 .

[96]  W. Leontief Quantitative Input and Output Relations in the Economic Systems of the United States , 1936 .

[97]  Karl R. Haapala,et al.  Development and Application of Models for Steelmaking and Casting Environmental Performance , 2012 .

[98]  M. J. Moran,et al.  Exergy Analysis: Principles and Practice , 1994 .

[99]  John W. Sutherland,et al.  Environmental Attributes of Manufacturing Processes , 2001 .

[100]  Timothy G. Gutowski,et al.  An Environmental Analysis of Machining , 2004 .

[101]  Steven J Skerlos,et al.  Comparison of life cycle emissions and energy consumption for environmentally adapted metalworking fluid systems. , 2008, Environmental science & technology.

[102]  Fernando Gomes de Almeida,et al.  Improving the environmental performance of machine-tools: influence of technology and throughput on the electrical energy consumption of a press-brake , 2011 .

[103]  C. E. Bates,et al.  Decomposition of resin binders and the relationship between the gases formed and the casting surface quality , 1975 .

[104]  Michael Zwicky Hauschild,et al.  Effects of globalisation on carbon footprints of products , 2009 .

[105]  Joost Duflou ICT and Energy Efficiency: The Case for Manufacturing , 2009 .

[106]  Steven J. Skerlos,et al.  Environmental aspects of laser-based and conventional tool and die manufacturing , 2007 .

[107]  Nicolas Perry,et al.  Rapid prototyping: energy and environment in the spotlight , 2006 .

[108]  Michael F. Zäh,et al.  Comparison of the Resource Efficiency of Alternative Process Chains for Surface Hardening , 2011 .

[109]  Wim Dewulf,et al.  Environmental Analysis of the Air Bending Process , 2011 .

[110]  Yong Tae Kang,et al.  Environmentally friendly energy system models using material circulation and energy cascade—the optimization work , 1999 .

[111]  Laura Sokka,et al.  Industrial symbiosis contributing to more sustainable energy use – an example from the forest industry in Kymenlaakso, Finland , 2011 .

[112]  Peter Groche,et al.  Environmentally benign tribo-systems for metal forming , 2010 .

[113]  T. J. Kotas,et al.  The Exergy Method of Thermal Plant Analysis , 2012 .

[114]  R. Costanza,et al.  Embodied energy and economic valuation. , 1980, Science.

[115]  Jan Szargut,et al.  Cumulative exergy losses associated with the production of lead metal , 1990 .

[116]  J. Liker The Toyota Way , 2003 .

[117]  Christoph Herrmann,et al.  State of Research and an innovative Approach for simulating Energy Flows of Manufacturing Systems , 2011 .

[118]  Jan C. Aurich,et al.  High-performance dry grinding using a grinding wheel with a defined grain pattern , 2008 .

[119]  Janet K. Allen,et al.  Applying Ecological Input‐Output Flow Analysis to Material Flows in Industrial Systems: Part I: Tracing Flows , 2004 .

[120]  Wim Dewulf,et al.  Methodology for systematic analysis and improvement of manufacturing unit process life cycle inventory (UPLCI) Part 1: Methodology Description , 2011 .

[121]  Göran Wall,et al.  Exergy - a useful concept within resource accounting , 1977 .

[122]  Birger Löfgren,et al.  Capturing the life cycle environmental performance of a company’s manufacturing system , 2009 .

[123]  Jan van Dalen,et al.  Input-output analysis of material flows with application to iron, steel and zinc , 1997 .

[124]  Frederikus J.A.M. van Houten,et al.  Visualization of environmental impacts for manufacturing processes using virtual reality , 2011 .

[125]  Peter Krajnik,et al.  Transitioning to sustainable production – Part I: application on machining technologies , 2010 .

[126]  S. M. Pandit,et al.  An Enhanced Input-Output Model for Material Flow Analysis of Manufacturing Processes , 2004 .

[127]  Makoto Fujishima,et al.  A study on energy efficiency improvement for machine tools , 2011 .

[128]  Heinz D. Kurz,et al.  'Classical' Roots of Input-Output Analysis: A Short Account of its Long Prehistory , 2000 .

[129]  F. Boons,et al.  The dynamics of industrial symbiosis: A proposal for a conceptual framework based upon a comprehensive literature review , 2011 .

[130]  Beno Sternlicht,et al.  Waste energy recovery: An excellent investment opportunity , 1982 .

[131]  Patrick E. Phelan,et al.  Energy conservation in compressed‐air systems , 2002 .

[132]  H.-M. Groscurth,et al.  Thermodynamic limits to energy optimization , 1989 .

[133]  Sebastian Thiede,et al.  Energy Efficiency in Manufacturing Systems , 2012 .

[134]  Corinne Reich-Weiser,et al.  A discussion of greenhouse gas emission tradeoffs and water scarcity within the supply chain , 2009 .

[135]  B. Hannon,et al.  The structure of ecosystems. , 1973, Journal of theoretical biology.

[136]  André Zein,et al.  Procedures and tools for metering energy consumption of machine tools , 2011 .

[137]  Bhavik R. Bakshi,et al.  Thermodynamic Input-Output Analysis of Economic and Ecological Systems , 2005 .

[138]  L. Sokka,et al.  Quantifying the total environmental impacts of an industrial symbiosis - a comparison of process-, hybrid and input-output life cycle assessment. , 2010, Environmental science & technology.

[139]  G. E. Mosher Calculating emission factors for pouring, cooling and shakeout , 1994 .

[140]  M. Schikorra,et al.  Hot profile extrusion of AA-6060 aluminum chips , 2009 .

[141]  Alexander Verl,et al.  Architecture for Multilevel Monitoring and Control of Energy Consumption , 2011 .

[142]  Eberhard Abele,et al.  Environmentally-friendly product development : methods and tools , 2005 .

[143]  Erich J. Schwarz,et al.  Implementing nature's lesson: The industrial recycling network enhancing regional development , 1997 .

[144]  Stephanie K. Dalquist,et al.  Life Cycle Analysis of Conventional Manufacturing Techniques: Sand Casting , 2004 .

[145]  Reimund Neugebauer,et al.  Heuristic-Based Evaluation of Energy Flows in Press Hardening Process Chains , 2011 .

[146]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[147]  Peter Krajnik,et al.  Transitioning to sustainable production – part II: evaluation of sustainable machining technologies , 2010 .

[148]  Michael Zwicky Hauschild,et al.  From Life Cycle Assessment to Sustainable Production: Status and Perspectives , 2005 .

[149]  Sudarsan Rachuri,et al.  Introducing Sustainability Early Into Manufacturing Process Planning , 2008 .

[150]  Jumyung Um,et al.  Context-Aware Analysis Approach to Enhance Industrial Smart Metering , 2011 .

[151]  Sangwon Suh,et al.  Theory of materials and energy flow analysis in ecology and economics , 2005 .

[152]  Jeffrey K. Liker,et al.  The Toyota way : 14 management principles from the world's greatest manufacturer , 2004 .

[153]  A. E. Tekkaya,et al.  The Effect of Extrusion Ratio and Material Flow on the Mechanical Properties of Aluminum Profiles Solid State Recycled from 6060 Aluminum Alloy Chips , 2011 .

[154]  Corinne Reich-Weiser,et al.  Appropriate use of Green Manufacturing Frameworks , 2010 .

[155]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[156]  Charles R. McLean,et al.  Utilizing Combinatorial Testing on Discrete Event Simulation Models for Sustainable Manufacturing , 2009 .

[157]  T. Gutowski,et al.  An Environmental Analysis of Injection Molding , 2006, Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment, 2006..

[158]  Ana Reis,et al.  Impact of Laser-Based Technologies in the Energy-Consumption of Metal Cutters: Comparison between Commercially Available Systems , 2011 .

[159]  Fritz Klocke,et al.  Evaluation of the Energy Consumption of a Directed Lubricoolant Supply with Variable Pressures and Flow Rates in Cutting Processes , 2012 .

[160]  R. Cox Compressed air : clean energy in a green world , 1996 .

[161]  Bernd Page,et al.  Combining discrete event simulation and material flow analysis in a component-based approach to industrial environmental protection , 2006, Environ. Model. Softw..

[162]  M. Chertow “Uncovering” Industrial Symbiosis , 2007 .