Near infrared plasmonic sensor based on Fano resonance

We introduce a compact plasmonic resonator that is capable of generating a Fano resonance in the transmission spectrum. The Fano resonance is observed with its unique lineshape. The proposed design is simple, compact, easy to fabricate and can be easily developed for different applications. The device structure is made of a gold layer, a metalinsulator- metal waveguide, and a rectangular cavity. As an application to the proposed plasmonic resonator, we introduce a gas sensor which is operational at the near infrared spectral range. The sensor possesses a high sensitivity of 1500nm/RIU at the telecom wavelength 1.55μm. FDTD simulation tools were conducted for the optimization of the device structure and obtaining the results.

[1]  Mohamed A. Swillam,et al.  Adjoint Sensitivity Analysis of Dielectric Discontinuities Using FDTD , 2007 .

[2]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[3]  Mohamed A. Swillam,et al.  Tunable nanoscale-effecient plasmonic demultiplexers , 2014, Photonics West - Optoelectronic Materials and Devices.

[4]  Yudong Li,et al.  Fano Resonance Based on Multimode Interference in Symmetric Plasmonic Structures and its Applications in Plasmonic Nanosensors , 2013 .

[5]  Harry A. Atwater The promise of plasmonics. , 2007 .

[6]  Mohamed A. Swillam,et al.  Nonlinear tuning techniques of plasmonic nano-filters , 2015 .

[7]  Mohamed A. Swillam,et al.  Semi-analytical design methodology for large scale metal–insulator–metal waveguide networks , 2014 .

[8]  Ramy H. Gohary,et al.  Efficient Approach for Sensitivity Analysis of Lossy and Leaky Structures Using FDTD , 2009 .

[9]  Osman S Ahmed,et al.  Realizing vertical light coupling and splitting in nano-plasmonic multilevel circuits. , 2013, Optics express.

[10]  Mohamed A. Swillam,et al.  Nanoscale highly selective plasmonic quad wavelength demultiplexer based on a metal-insulator-metal , 2015 .

[11]  Dayuan Xiong,et al.  Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems , 2015 .

[12]  Mohamed A. Swillam,et al.  Plasmonic slot waveguides with core nonlinearity , 2013, OPTO.

[13]  Yung-Chiang Lan,et al.  Plasmonic Waveguide Filters Based on Tunneling and Cavity Effects , 2010 .

[14]  Mohamed A. Swillam,et al.  Nanoelectromechanical systems-based metal-insulator-metal plasmonics tunable filter , 2015 .

[15]  J. Pendry,et al.  Collective Theory for Surface Enhanced Raman Scattering. , 1996, Physical review letters.

[16]  J. P. Marangos ELECTROMAGNETICALLY INDUCED TRANSPARENCY , 2005 .

[17]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[18]  Mohamed A. Swillam,et al.  Plasmonic tunable nano-filter , 2014, 2014 31st National Radio Science Conference (NRSC).

[19]  Mohamed A. Swillam,et al.  Cheap and efficient plasmonic solar cell , 2014, Photonics West - Optoelectronic Materials and Devices.

[20]  Mohamed A. Swillam,et al.  Integrated Metal-Insulator-Metal Plasmonic Nano Resonator: an Analytical Approach , 2013 .

[21]  B. Ni,et al.  A novel plasmonic nanosensor based on electro-magnetically induced transparency of waveguide resonator systems , 2014, Numerical Simulation of Optoelectronic Devices, 2014.

[22]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[23]  Mohamed A. Swillam,et al.  Accurate and efficient sensitivity extraction of complex structures using FDTD , 2007, Photonics North.

[24]  Eric C. Le Ru,et al.  Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects , 2008 .

[25]  Mohamed A. Swillam,et al.  NEMS-based MIM plasmonics tunable filter , 2016, SPIE OPTO.

[26]  Mohamed A. Swillam,et al.  Design optimization and fabrication of plasmonic nano sensor , 2014, Photonics West - Optoelectronic Materials and Devices.

[27]  Mohamed A. Swillam,et al.  Efficient modelling and sensitivity analysis of lossy structures using FDTD , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[28]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[29]  Mohamed A. Swillam,et al.  Plasmonic silicon solar cells using titanium nitride: a comparative study , 2014 .

[30]  Mohamed A. Swillam,et al.  Full Wave Sensitivity Analysis of Guided Wave Structures Using FDTD , 2008 .

[31]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[32]  Mohamed A. Swillam,et al.  Resonance-based integrated plasmonic nanosensor for lab-on-chip applications , 2013 .

[33]  Mohamed A. Swillam,et al.  Filter Response of Feedback Plasmonic Junctions , 2011 .

[34]  C. Haynes,et al.  Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy , 2005 .

[35]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[36]  M. Fox Optical Properties of Solids , 2010 .

[37]  Mohamed A. Swillam,et al.  Integrated coupled multi-stage plasmonic resonator for on-chip sensing , 2014, Photonics Europe.

[38]  Mohamed A. Swillam,et al.  High Sensitivity Hybrid Plasmonic Rectangular Resonator for Gas Sensing Applications , 2015 .

[39]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[40]  Mohamed A. Swillam,et al.  Hybrid plasmonic electro-optical modulator , 2016 .

[41]  Mohamed A. Swillam,et al.  Dispersion analysis and engineering of 2D plasmonic waveguides , 2014 .

[42]  Mohamed A. Swillam,et al.  Nonlinear electro-optic tuning of plasmonic nano-filter , 2015, Photonics West - Optoelectronic Materials and Devices.

[43]  Mohamed A. Swillam,et al.  Analytical model for metal-insulator-metal mesh waveguide architectures , 2012 .