State-of-the-art energetic and morphological modelling of the launching site of the M87 jet

[1]  L. Rezzolla,et al.  Comparison of the ion-to-electron temperature ratio prescription: GRMHD simulations with electron thermodynamics , 2021, Monthly Notices of the Royal Astronomical Society.

[2]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VII. Polarization of the Ring , 2021, The Astrophysical Journal Letters.

[3]  Daniel C. M. Palumbo,et al.  Verification of Radiative Transfer Schemes for the EHT , 2020, The Astrophysical Journal.

[4]  C. Fromm,et al.  Modelling the polarised emission from black holes on event horizon-scales , 2019, Proceedings of the International Astronomical Union.

[5]  L. Rezzolla,et al.  Constrained transport and adaptive mesh refinement in the Black Hole Accretion Code , 2019, Astronomy & Astrophysics.

[6]  J. Davelaar,et al.  Modeling non-thermal emission from the jet-launching region of M 87 with adaptive mesh refinement , 2019, Astronomy & Astrophysics.

[7]  R. Nemmen The Spin of M87* , 2019, The Astrophysical Journal.

[8]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring , 2019, The Astrophysical Journal.

[9]  S. T. Timmer,et al.  First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[10]  R. Narayan,et al.  Two-temperature, Magnetically Arrested Disc simulations of the jet from the supermassive black hole in M87 , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  Alexander W. Raymond,et al.  Event Horizon Telescope Results . I . the Shadow of the Supermassive Black Hole , 2019 .

[12]  J. Algaba,et al.  Parabolic Jets from the Spinning Black Hole in M87 , 2018, The Astrophysical Journal.

[13]  E. Ros,et al.  The limb-brightened jet of M87 down to the 7 Schwarzschild radii scale , 2018, Astronomy & Astrophysics.

[14]  H. Falcke,et al.  The current ability to test theories of gravity with black hole shadows , 2018, Nature Astronomy.

[15]  David Ball,et al.  Electron and Proton Acceleration in Trans-relativistic Magnetic Reconnection: Dependence on Plasma Beta and Magnetization , 2018, The Astrophysical Journal.

[16]  William Junor,et al.  The Structure and Dynamics of the Subparsec Jet in M87 Based on 50 VLBA Observations over 17 Years at 43 GHz , 2018, 1802.06166.

[17]  H. Imai,et al.  Capabilities and prospects of the East Asia Very Long Baseline Interferometry Network , 2018, 1802.01136.

[18]  J. Algaba,et al.  Long-term millimeter VLBI monitoring of M 87 with KVN at milliarcsecond resolution: nuclear spectrum , 2018, 1801.10038.

[19]  M. Lister,et al.  MOJAVE. XV. VLBA 15 GHz Total Intensity and Polarization Maps of 437 Parsec-scale AGN Jets from 1996 to 2017 , 2017, 1711.07802.

[20]  J. Algaba,et al.  Pilot KaVA monitoring on the M87 jet: confirming the inner jet structure and superluminal motions at sub-pc scales , 2017, 1706.02066.

[21]  Jian‐Chao Feng,et al.  Constraint on the black hole spin of M87 from the accretion-jet model , 2017, 1705.07804.

[22]  H. Falcke,et al.  The black hole accretion code , 2016, 1611.09720.

[23]  R. Walker,et al.  Kinematics of the jet in M 87 on scales of 100–1000 Schwarzschild radii , 2016, 1608.05063.

[24]  J. A. Fern'andez-Ontiveros,et al.  The central parsecs of M87: jet emission and an elusive accretion disc , 2015, 1508.02302.

[25]  Alan E. E. Rogers,et al.  230 GHz VLBI OBSERVATIONS OF M87: EVENT‐HORIZON‐SCALE STRUCTURE DURING AN ENHANCED VERY‐HIGH‐ENERGY γ ?> ‐RAY STATE IN 2012 , 2015, 1505.03545.

[26]  Charles F. Gammie,et al.  Observational appearance of inefficient accretion flows and jets in 3D GRMHD simulations: Application to Sagittarius A , 2014, 1408.4743.

[27]  Alan E. E. Rogers,et al.  Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87 , 2012, Science.

[28]  Z. Younsi,et al.  General relativistic radiative transfer: formulation and emission from structured tori around black holes , 2012, 1207.4234.

[29]  R. Narayan,et al.  GRMHD simulations of magnetized advection‐dominated accretion on a non‐spinning black hole: role of outflows , 2012, 1206.1213.

[30]  C. Gammie,et al.  GLOBAL GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF BLACK HOLE ACCRETION FLOWS: A CONVERGENCE STUDY , 2012 .

[31]  Masanori Nakamura,et al.  THE STRUCTURE OF THE M87 JET: A TRANSITION FROM PARABOLIC TO CONICAL STREAMLINES , 2011, 1110.1793.

[32]  P. K. Leung,et al.  RADIATIVE MODELS OF SGR A* FROM GRMHD SIMULATIONS , 2009, 0909.5431.

[33]  M. Lister,et al.  The Inner Jet of the Radio Galaxy [OBJECTNAME STATUS="LINKS"]M87[/OBJECTNAME] , 2007 .

[34]  J. Ollitrault Relativistic hydrodynamics , 2007 .

[35]  F. Xiao,et al.  Modelling energetic particles by a relativistic kappa-loss-cone distribution function in plasmas , 2006 .

[36]  R. Antonucci,et al.  Thermal Emission as a Test for Hidden Nuclei in Nearby Radio Galaxies , 2002, astro-ph/0207385.

[37]  R. Narayan,et al.  Magnetically Arrested Disk : an Energetically Efficient Accretion Flow , 2003, astro-ph/0305029.

[38]  J. Font,et al.  On the Stability of Thick Accretion Disks around Black Holes , 2002, astro-ph/0211102.

[39]  William B. Sparks,et al.  Deep 10 Micron Imaging of M87 , 2001 .

[40]  S. Doeleman,et al.  A 3 Millimeter VLBI Continuum Source Survey , 1998 .

[41]  W. Junor,et al.  The radio jet in 3C274 at 0.01 PC resolution , 1995 .

[42]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .