Effect of temperature on the electrical properties of an organic memristive device

Electrical characterization of an organic memristive device shows an unexpected dependence of the conductivity variation with temperature, namely, slowing down of kinetics with increasing temperature. The observed behavior was explained by the hydration of the solid electrolyte layer, which is more significant at lower temperatures. It was possible to stabilize the device properties by protecting it with inert insulating material.

[1]  G. Paasch,et al.  The influence of porosity and the nature of the charge storage capacitance on the impedance behaviour of electropolymerized polyaniline films , 1998 .

[2]  Y. Pershin,et al.  Spin Memristive Systems: Spin Memory Effects in Semiconductor Spintronics , 2008, 0806.2151.

[3]  André Domhardt,et al.  Calculation of electrical circuits with fractional characteristics of construction elements , 2005 .

[4]  Verein Deutscher Ingenieure,et al.  Forschung im Ingenieurwesen , 1964 .

[5]  T. Berzina,et al.  Hybrid electronic device based on polyaniline-polyethyleneoxide junction , 2005 .

[6]  Massimiliano Di Ventra,et al.  Phase-transition driven memristive system , 2009, 0901.0899.

[7]  R. McCreery,et al.  In situ Raman spectroscopy of bias-induced structural changes in nitroazobenzene molecular electronic junctions. , 2004, Journal of the American Chemical Society.

[8]  L. Chua Memristor-The missing circuit element , 1971 .

[9]  W. Lu,et al.  Programmable Resistance Switching in Nanoscale Two-terminal Devices , 2008 .

[10]  M. Meyyappan,et al.  Indium selenide nanowire phase-change memory , 2007 .

[11]  Jinho Ahn,et al.  Nanostructured films employed as sensing units in an "electronic tongue" system. , 2007 .

[12]  Luis A. Agapito,et al.  Atomistic Origins of Molecular Memristors , 2009 .

[13]  D. Allara,et al.  Nascent metal atom condensation in self-assembled monolayer matrices: coverage-driven morphology transitions from buried adlayers to electrically active metal atom nanofilaments to overlayer clusters during aluminum atom deposition on alkanethiolate/gold monolayers. , 2009, Journal of the American Chemical Society.

[14]  Koon Gee Neoh,et al.  POLYANILINE: A POLYMER WITH MANY INTERESTING INTRINSIC REDOX STATES , 1998 .

[15]  Anteo Smerieri,et al.  Origin of current oscillations in a polymeric electrochemically controlled element , 2008 .

[16]  Chenming Hu,et al.  Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode , 2007 .

[17]  Tatiana Berzina,et al.  On the stability of polymeric electrochemical elements for adaptive networks , 2008 .

[18]  Massimiliano Di Ventra,et al.  Memristive model of amoeba learning. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  T. Berzina,et al.  Electrochemical control of the conductivity in an organic memristor: a time-resolved X-ray fluorescence study of ionic drift as a function of the applied voltage. , 2009, ACS applied materials & interfaces.

[20]  T. Berzina,et al.  Non-equilibrium electrical behaviour of polymeric electrochemical junctions , 2007 .

[21]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[22]  Taher Daud,et al.  Solid‐state thin‐film memistor for electronic neural networks , 1990 .