A descriptive complexity approach to the linear hierarchy

This paper gives some new logical characterizations of the class of rudimentary languages in the scope of descriptive complexity. These characterizations are based on a logic introduced by Parigot and Pelz to characterize Petri Net languages, and generalized quantifiers of comparison of cardinality.

[1]  Elisabeth Pelz,et al.  A Logical Approach of Petri Net Languages , 1985, Theor. Comput. Sci..

[2]  Frédéric Olive,et al.  Monadic Logical Definability of NP-Complete Problems , 1994, CSL.

[3]  John Derrick,et al.  Meeting of the Association for Symbolic Logic Leeds 1967 , 1968, J. Symb. Log..

[4]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[5]  Erich Grädel On the Notion of Linear Time Computability , 1990, Int. J. Found. Comput. Sci..

[6]  Neil Immerman,et al.  Descriptive Complexity , 1999, Graduate Texts in Computer Science.

[7]  Thomas Schwentick,et al.  A Logical Characterisation of Linear Time on Nondeterministic Turing Machines , 1999, STACS.

[8]  W. V. Quine,et al.  Concatenation as a basis for arithmetic , 1946, Journal of Symbolic Logic.

[9]  Keith Harrow Sub-elementary classes of functions and relations. , 1973 .

[10]  Saharon Shelah,et al.  Nearly Linear Time , 1989, Logic at Botik.

[11]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[12]  ’ Ronald Fagin,et al.  - Order Spectra and Polynomial-Time Recognizable Sets , 1974 .

[13]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[14]  Neil Immerman,et al.  Languages that Capture Complexity Classes , 1987, SIAM J. Comput..

[15]  R. Smullyan Theory of formal systems , 1962 .

[16]  Celia Wrathall,et al.  Rudimentary Predicates and Relative Computation , 1978, SIAM J. Comput..

[17]  Etienne Grandjean,et al.  Sorting, linear time and the satisfiability problem , 1996, Annals of Mathematics and Artificial Intelligence.

[18]  James F. Lynch,et al.  Complexity classes and theories of finite models , 1981, Mathematical systems theory.

[19]  Ludwig Staiger,et al.  Ω-languages , 1997 .

[20]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[21]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..