Nonlocal convection–diffusion problems and finite element approximations

Abstract Nonlocal models are becoming increasingly popular in numerical simulations of important application problems, ranging from anomalous diffusion in heterogeneous environment to crack and fracture in composites. In this paper, we propose and compare some nonlocal models for convection–diffusion problems and study their finite element approximations by piecewise constant and piecewise bilinear basis functions. Our focus is on the convection-dominated case. Through analysis and numerical experiments, we demonstrate the advantage of the upwind models which are more consistent with the physical nature and allow more stable and robust numerical approximations. On the other hand, the central model may produce unphysical oscillations.

[1]  D. Benson,et al.  Multidimensional advection and fractional dispersion. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  R. Lehoucq,et al.  Peridynamic Theory of Solid Mechanics , 2010 .

[3]  Qiang Du,et al.  A New Approach for a Nonlocal, Nonlinear Conservation Law , 2012, SIAM J. Appl. Math..

[4]  Qiang Du,et al.  Nonlocal convection-diffusionvolume-constrained problems and jump processes , 2014 .

[5]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[6]  Youn Doh Ha,et al.  Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites , 2012 .

[7]  Stewart Andrew Silling,et al.  Linearized Theory of Peridynamic States , 2010 .

[8]  Qiang Du,et al.  Finite range jump processes and volume–constrained diffusion problems , 2014 .

[9]  K. W. Morton,et al.  Finite element methods for hyperbolic equations , 1987 .

[11]  Qiang Du,et al.  Analysis of a scalar nonlocal peridynamic model with a sign changing kernel , 2013 .

[12]  Thomas J. R. Hughes,et al.  A Petrov-Galerkin finite element method for convection-dominated flows: An accurate upwinding technique for satisfying the maximum principle☆ , 1985 .

[13]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[14]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[15]  Joseph E. Pasciak,et al.  A least-squares approach based on a discrete minus one inner product for first order systems , 1997, Math. Comput..

[16]  V. Ervin,et al.  Variational solution of fractional advection dispersion equations on bounded domains in ℝd , 2007 .

[17]  R. Codina Comparison of some finite element methods for solving the diffusion-convection-reaction equation , 1998 .

[18]  N. SIAMJ.,et al.  ANALYSIS AND COMPARISON OF DIFFERENT APPROXIMATIONS TO NONLOCAL DIFFUSION AND LINEAR PERIDYNAMIC EQUATIONS∗ , 2013 .

[19]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[20]  Selda Oterkus,et al.  Peridynamic thermal diffusion , 2014, J. Comput. Phys..

[21]  R. Lehoucq,et al.  Fractional Diffusion on Bounded Domains , 2015 .

[22]  Qiang Du,et al.  Asymptotically Compatible Schemes and Applications to Robust Discretization of Nonlocal Models , 2014, SIAM J. Numer. Anal..

[23]  Olaf Weckner,et al.  The effect of long-range forces on the dynamics of a bar , 2005 .

[24]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[25]  Florin Bobaru,et al.  A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities , 2012, J. Comput. Phys..

[26]  X. Chen,et al.  Continuous and discontinuous finite element methods for a peridynamics model of mechanics , 2011 .

[27]  Li Tian,et al.  A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models , 2013, Math. Comput..

[28]  Michael L. Parks,et al.  Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains , 2013 .

[29]  S. Silling,et al.  Deformation of a Peridynamic Bar , 2003 .

[30]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[31]  Qiang Du,et al.  Analysis and Comparison of Different Approximations to Nonlocal Diffusion and Linear Peridynamic Equations , 2013, SIAM J. Numer. Anal..

[32]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[33]  S. Silling,et al.  Peridynamics via finite element analysis , 2007 .

[34]  S. Silling,et al.  Convergence, adaptive refinement, and scaling in 1D peridynamics , 2009 .

[35]  Q. Du,et al.  MATHEMATICAL ANALYSIS FOR THE PERIDYNAMIC NONLOCAL CONTINUUM THEORY , 2011 .

[36]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[37]  J. Guermond Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .

[38]  Li Tian,et al.  A Convergent Adaptive Finite Element Algorithm for Nonlocal Diffusion and Peridynamic Models , 2013, SIAM J. Numer. Anal..

[39]  Qiang Du,et al.  Mathematical Models and Methods in Applied Sciences c ○ World Scientific Publishing Company Sandia National Labs SAND 2010-8353J A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS , 2022 .

[40]  Kun Zhou,et al.  Mathematical and Numerical Analysis of Linear Peridynamic Models with Nonlocal Boundary Conditions , 2010, SIAM J. Numer. Anal..

[41]  Hong Wang,et al.  A fast and faithful collocation method with efficient matrix assembly for a two-dimensional nonlocal diffusion model , 2014 .

[42]  Liviu I. Ignat,et al.  A nonlocal convection–diffusion equation , 2007 .