Concurrent Mining During Construction and Water-Filling of a Goaf Groundwater Reservoir in a Coal Mine

Coal mining has aggravated water scarcity in the arid areas of northwestern China. Concurrent aquifer drainage, mining, and water storage is proposed, using a goaf groundwater reservoir (GGWR) to preserve the area’s fragile ecosystem. By continuously draining the overlying aquifer of the working face and simultaneously storing water in the goaf while the working face is mined, this technology can maintain the storage capacity of the GGWR without jeopardizing mine safety. The drainage process was simulated, based on mining conditions of the 11201 working face in the Yuandatan coal mine, to investigate how water pressure variations in the overlying aquifer would affect GGWR construction. Then, two drainage borehole arrangements were simulated. The research demonstrated that the resulting drainage intensity would enable continuous operation of “aquifer drainage-coal mining-water storage”, and that the design satisfies the in-situ drainage and storage requirements. Therefore, concurrent construction and water-filling of the GGWR is feasible.ZusammenfassungDer Kohlenbergbau hat den Wassermangel in den ariden Bereichen Nordchinas verschärft. Parallel sind die Entwässerung des Grundwasserkörpers, der Abbau und die Wasserspeicherung unter Verwendung des Alten Mannes als Grundwasserreservoir (GGWR) zur Schonung des fragilen Ökosystems des Gebiets geplant. Durch kontinuierliche Entwässerung des hangenden Aquifers über der Abbaufront und gleichzeitige Speicherung der gewonnen Wässer im Alten Mann während die Abbaufront vorangetrieben wird, kann diese Vorgangsweise die Speicherkapazität des GGWR erhalten ohne die Sicherheit beim Abbau zu gefährden. Der Entwässerungsprozess wurde auf Basis der Bedingungen des Abbaus 11201 in der Yuandatan Kohlengrube nachgebildet, um zu untersuchen wie Wasserdruckveränderungen im hangenden Aquifer die Entstehung des GGWR beeinflusst. Dann wurden zwei Entwässerungsbohrlochanordnungen simuliert. Die Untersuchung zeigte dass die sich ergebende Entwässerungsintensität den kontinuierlichen Betrieb des Systems „Aquiferentwässerung – Kohlenabbau – Wasserspeicherung“ ermöglicht und die Auslegung die in-situ Entwässerungs- und Speichererfordernisse erfüllt. Daher ist die gleichzeitige Nutzung des alten Mannes als GGWR während des Abbaubetriebes möglich.ResumenLa minería del carbón ha agravado la escasez de agua en las áreas áridas del noroeste de China. Se propone el drenaje concurrente del acuífero, la extracción y el almacenamiento de agua, utilizando un reservorio de aguas subterráneas (GGWR) para preservar el frágil ecosistema del área. Por drenaje continuo del acuífero que cubre la cara de trabajo y el almacenamiento simultáneo de agua en el pozo durante el trabajo minero, esta tecnología puede mantener la capacidad de almacenamiento del GGWR sin afectar la seguridad de la mina. El proceso de drenaje fue simulado, basado en las condiciones mineras de la cara de trabajo 11201 en la mina de carbón de Yuandatan, para investigar cómo las variaciones de presión del agua en el acuífero suprayacente afectarían la construcción del GGWR. Luego, se simularon dos arreglos de pozo de drenaje. La investigación demostró que la intensidad de drenaje resultante permitiría una operación continua de "drenaje de acuíferos-extracción de carbón-almacenamiento de agua", y que el diseño satisface los requisitos de drenaje y almacenamiento in situ. Por lo tanto, la construcción simultánea y el llenado de agua del GGWR es factible.摘要在中国西北干旱地区,煤炭开采加剧了水资源短缺。为保护该地区脆弱的生态环境,提出了“疏水-采煤-储水”并行作业的采空区地下水库构建与充水技术。该技术对工作面上覆含水层进行连续疏排,同时将疏排水存储于采空区,能够保证采空区地下水库储水能力及安全开采。基于袁大滩煤矿11201工作面开采条件,模拟研究了上覆含水层疏水过程中的水压变化对采空区地下水库构建的影响。对两种疏水强度钻孔布置进行模拟,研究发现疏水强度保证了“疏水-采煤-储水”并行作业的连续性,设计满足现场疏水和储水要求。因此,并行作业的采空区地下水库构建与充水技术是可行的。

[1]  Suping Peng,et al.  Water inrush and environmental impact of shallow seam mining , 2005 .

[2]  A. Ordóñez,et al.  Hydraulic and Thermal Modelling of an Underground Mining Reservoir , 2017, Mine Water and the Environment.

[3]  Rajat Gupta,et al.  Paleochannels and their potential for artificial groundwater recharge in the western Ganga plains , 2011 .

[4]  Zhuping Sheng,et al.  An Aquifer Storage and Recovery system with reclaimed wastewater to preserve native groundwater resources in El Paso, Texas. , 2005, Journal of environmental management.

[5]  P. Hai RESEARCH ON BASIC THEORY OF MINING WITH WATER RESOURCES PROTECTION AND ITS APPLICATION TO ARID AND SEMI-ARID MINING AREAS , 2009 .

[6]  Xuejie Deng,et al.  Prediction of the Height of the Water-Conducting Zone Above the Mined Panel in Solid Backfill Mining , 2014, Mine Water and the Environment.

[7]  Ju Jin-feng Utilization Technology of Mine Water Resources in Daliuta Mine , 2011 .

[8]  Wenping Li,et al.  Effects of Coal Mining on Shallow Water Resources in Semiarid Regions: A Case Study in the Shennan Mining Area, Shaanxi, China , 2017, Mine Water and the Environment.

[9]  Christopher Mark,et al.  Science of empirical design in mining ground control , 2016 .

[10]  S. Kulshreshtha A Global Outlook for Water Resources to the Year 2025 , 1998 .

[11]  Baohong Shen,et al.  Coal mining under aquifers in China: a case study , 2004 .

[12]  M. Rich,et al.  World water resources: Trends, challenges, and solutions , 2006 .

[13]  Jorge Loredo,et al.  Mine Water for Energy and Water Supply in the Central Coal Basin of Asturias (Spain) , 2013, Mine Water and the Environment.

[14]  Gu Da-zha Theory framework and technological system of coal mine underground reservoir , 2015 .

[15]  A. Marei,et al.  Assessment of Artificial Recharge Test in Jeftlik – Faria Area, West Bank , 2011 .

[16]  Gao Jin,et al.  Application of fully mechanized full seam one passing mining technology to thick seam in Shendong mining area , 2010 .

[17]  A. Ordóñez,et al.  Hydrogeological definition and applicability of abandoned coal mines as water reservoirs. , 2012, Journal of environmental monitoring : JEM.

[18]  M. Farhad Howladar,et al.  Coal mining impacts on water environs around the Barapukuria coal mining area, Dinajpur, Bangladesh , 2013, Environmental Earth Sciences.

[19]  Hong Yang,et al.  Sustaining China's water resources. , 2013, Science.

[20]  Guo Ya-wei Type classification and main characteristics of mine water disasters , 2013 .

[21]  Xiao He,et al.  Integrated method of RS and GPR for monitoring the changes in the soil moisture and groundwater environment due to underground coal mining , 2009 .

[22]  Li-qiang Ma,et al.  Technology of groundwater reservoir construction in goafs of shallow coalfields , 2009 .

[23]  Gangwei Fan,et al.  Aquifer protection during longwall mining of shallow coal seams: A case study in the Shendong Coalfield of China , 2011 .

[24]  Gongyu Li,et al.  Impact of karst water on coal mining in North China , 2006 .

[25]  P. Wycisk,et al.  Managed aquifer recharge (MAR) by the construction of subsurface dams in the semi-arid regions: A case study of the Kalangi river basin, Andhra Pradesh , 2013, Journal of the Geological Society of India.

[26]  Wang Xin Problem and countermeasure of mine water resource regeneration in China , 2008 .

[27]  Yu-Shu Wu,et al.  Modeling capillary barriers in unsaturated fractured rock , 2002 .

[28]  A. Bhattacharya ARTIFICIAL GROUND WATER RECHARGE WITH A SPECIAL REFERENCE TO INDIA , 2010 .

[29]  Wenjie Sun,et al.  Hydrogeological Classification and Water Inrush Accidents in China’s Coal Mines , 2016, Mine Water and the Environment.

[30]  Gudmundur S. Bodvarsson,et al.  Analyzing unsaturated flow patterns in fractured rock using an integrated modeling approach , 2007 .

[31]  A. Gupta,et al.  Operation of a groundwater reservoir in conjunction with surface water , 1987 .