Homotrimeric, β-Stranded Viral Adhesins and Tail Proteins

A distinctive subfamily of β-sheet proteins are the parallel β-helices, first identified in the pectate lyases used by Erwinia species to infect plant cells ([31][1], [73][2]). This motif involves the processive folding of the polypeptide chain into an elongated coil or solenoid-shaped structure,

[1]  S. Venyaminov,et al.  Expression and Properties of Bacteriophage T4 Gene Product 11 , 2001, Biochemistry (Moscow).

[2]  W. Rabsch,et al.  A comparative study on the frequency of prophages among natural isolates of Salmonella and Escherichia coli with emphasis on generalized transducers , 2004, Antonie van Leeuwenhoek.

[3]  G. Lemay,et al.  Computational Sequence Analysis of Mammalian Reovirus Proteins , 2004, Virus Genes.

[4]  I. Riede Receptor specificity of the short tail fibres (gp12) of T-even type Escherichia coli phages , 2004, Molecular and General Genetics MGG.

[5]  P. Pring-Åkerblom,et al.  Adenovirus Type 37 Uses Sialic Acid as a Cellular Receptor on Chang C Cells , 2002, Journal of Virology.

[6]  J. Sodroski,et al.  Highly Stable Trimers Formed by Human Immunodeficiency Virus Type 1 Envelope Glycoproteins Fused with the Trimeric Motif of T4 Bacteriophage Fibritin , 2002, Journal of Virology.

[7]  J. King,et al.  The interdigitated β‐helix domain of the P22 tailspike protein acts as a molecular clamp in trimer stabilization , 2002, Protein science : a publication of the Protein Society.

[8]  P. Bork,et al.  CASH – a β-helix domain widespread among carbohydrate-binding proteins , 2002 .

[9]  Fumio Arisaka,et al.  Structure of the cell-puncturing device of bacteriophage T4 , 2002, Nature.

[10]  Thilo Stehle,et al.  Crystal structure of reovirus attachment protein σ1 reveals evolutionary relationship to adenovirus fiber , 2002, The EMBO journal.

[11]  P. Bork,et al.  CASH--a beta-helix domain widespread among carbohydrate-binding proteins. , 2002, TIBS -Trends in Biochemical Sciences. Regular ed.

[12]  B. Berger,et al.  betawrap: Successful prediction of parallel β-helices from primary sequence reveals an association with many microbial pathogens , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[13]  S. Miller,et al.  Crystal structure of a heat and protease-stable part of the bacteriophage T4 short tail fibre. , 2001, Journal of molecular biology.

[14]  R. Pickersgill,et al.  The architecture of parallel β-helices and related folds , 2001 .

[15]  M. Chilosi,et al.  Heparan Sulfate Glycosaminoglycans Are Receptors Sufficient To Mediate the Initial Binding of Adenovirus Types 2 and 5 , 2001, Journal of Virology.

[16]  G. Schoehn,et al.  Identification and Crystallisation of a Heat- and Protease-Stable Fragment of the Bacteriophage T4 Short Tail Fibre , 2001, Biological chemistry.

[17]  R. Kammerer,et al.  Stabilization of short collagen-like triple helices by protein engineering. , 2001, Journal of molecular biology.

[18]  Asma Nusrat,et al.  Junction Adhesion Molecule Is a Receptor for Reovirus , 2001, Cell.

[19]  R. Pickersgill,et al.  The architecture of parallel beta-helices and related folds. , 2001, Progress in biophysics and molecular biology.

[20]  M. Rossmann,et al.  Structure of bacteriophage T4 gene product 11, the interface between the baseplate and short tail fibers. , 2000, Journal of molecular biology.

[21]  I. Molineux,et al.  Role of the Gp16 lytic transglycosylase motif in bacteriophage T7 virions at the initiation of infection , 2000, Molecular microbiology.

[22]  D. Bamford,et al.  Bacteriophage PRD1 DNA entry uses a viral membrane‐associated transglycosylase activity , 2000, Molecular microbiology.

[23]  M. Hofnung,et al.  The C-Terminal Portion of the Tail Fiber Protein of Bacteriophage Lambda Is Responsible for Binding to LamB, Its Receptor at the Surface of Escherichia coli K-12 , 2000, Journal of bacteriology.

[24]  M. Bewley,et al.  Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. , 1999, Science.

[25]  Anna Mitraki,et al.  A triple β-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein , 1999, Nature.

[26]  M. Rossmann,et al.  The structure of bacteriophage T4 gene product 9: the trigger for tail contraction. , 1999, Structure.

[27]  S. Miller,et al.  Folding of coliphage T4 short tail fiber in vitro. Analysing the role of a bacteriophage-encoded chaperone. , 1999, European journal of biochemistry.

[28]  R. Ruigrok,et al.  Unfolding studies of human adenovirus type 2 fibre trimers. Evidence for a stable domain. , 1999, European journal of biochemistry.

[29]  P. Stewart,et al.  Role of αv Integrins in Adenovirus Cell Entry and Gene Delivery , 1999, Microbiology and Molecular Biology Reviews.

[30]  J. King,et al.  There's a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike. , 1999, Structure.

[31]  S. Kanamaru,et al.  The C-Terminal Fragment of the Precursor Tail Lysozyme of Bacteriophage T4 Stays as a Structural Component of the Baseplate after Cleavage , 1999, Journal of bacteriology.

[32]  R. Lamb,et al.  Structural basis for paramyxovirus-mediated membrane fusion. , 1999, Molecular cell.

[33]  H. Schmieger Molecular Survey of the Salmonella Phage Typing System of Anderson , 1999, Journal of bacteriology.

[34]  G. Lemay,et al.  A glycosyl hydrolase activity of mammalian reovirus sigma1 protein can contribute to viral infection through a mucus layer. , 1999, Journal of molecular biology.

[35]  A. Steven,et al.  Engineering trimeric fibrous proteins based on bacteriophage T4 adhesins. , 1998, Protein engineering.

[36]  M G Rossmann,et al.  Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain. , 1997, Structure.

[37]  Deborah Fass,et al.  Core Structure of gp41 from the HIV Envelope Glycoprotein , 1997, Cell.

[38]  S. Steinbacher,et al.  Phage P22 tailspike protein: crystal structure of the head-binding domain at 2.3 Å, fully refined structure of the endorhamnosidase at 1.56 Å resolution, and the molecular basis of O-antigen recognition and cleavage1 , 1997, Journal of Molecular Biology.

[39]  S. Steinbacher,et al.  Interaction of Salmonella Phage P22 with Its O-Antigen Receptor Studied by X-Ray Crystallography , 1997, Biological chemistry.

[40]  T. Dermody,et al.  Mutations in type 3 reovirus that determine binding to sialic acid are contained in the fibrous tail domain of viral attachment protein sigma1 , 1997, Journal of virology.

[41]  J. Bergelson,et al.  Isolation of a Common Receptor for Coxsackie B Viruses and Adenoviruses 2 and 5 , 1997, Science.

[42]  S. Steinbacher,et al.  Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. Conway,et al.  Stoichiometry and domainal organization of the long tail-fiber of bacteriophage T4: a hinged viral adhesin. , 1996, Journal of molecular biology.

[44]  M. Coffey,et al.  Co‐translational trimerization of the reovirus cell attachment protein. , 1996, The EMBO journal.

[45]  P. C. Lee,et al.  C-terminal Trimerization, but Not N-terminal Trimerization, of the Reovirus Cell Attachment Protein Is a Posttranslational and Hsp70/ATP-dependent Process (*) , 1996, Journal of Biological Chemistry.

[46]  M. Nibert,et al.  Infectious subvirion particles of reovirus type 3 Dearing exhibit a loss in infectivity and contain a cleaved sigma 1 protein , 1995, Journal of virology.

[47]  S Cusack,et al.  Adenovirus fiber. , 1995, Current topics in microbiology and immunology.

[48]  S. Steinbacher,et al.  Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. , 1994, Science.

[49]  P. Kitts,et al.  Cell-binding domain of adenovirus serotype 2 fiber , 1994, Journal of virology.

[50]  J. Drake,et al.  Molecular Biology of Bacteriophage T4 , 1994 .

[51]  S. Miller,et al.  Folding and assembly of phage P22 tailspike endorhamnosidase lacking the N-terminal, head-binding domain. , 1993, European journal of biochemistry.

[52]  M. Yoder,et al.  New domain motif: the structure of pectate lyase C, a secreted plant virulence factor. , 1993, Science.

[53]  B L Trus,et al.  The short tail-fiber of bacteriophage T4: molecular structure and a mechanism for its conformational transition. , 1993, Virology.

[54]  C. Sander,et al.  New triple-helical model for the shaft of the adenovirus fibre. , 1992, Journal of molecular biology.

[55]  S. Broder,et al.  From the National Institutes of Health. , 1992, JAMA.

[56]  J. King,et al.  Thermal unfolding pathway for the thermostable P22 tailspike endorhamnosidase. , 1991, Biochemistry.

[57]  R. Ruigrok,et al.  Structure of adenovirus fibre. II. Morphology of single fibres. , 1990, Journal of molecular biology.

[58]  B L Trus,et al.  Molecular structure of the cell-attachment protein of reovirus: correlation of computer-processed electron micrographs with sequence-based predictions , 1990, Journal of virology.

[59]  M. Nibert,et al.  Proteolytic digestion of reovirus in the intestinal lumens of neonatal mice , 1989, Journal of virology.

[60]  M. Nibert,et al.  Sigma 1 protein of mammalian reoviruses extends from the surfaces of viral particles , 1988, Journal of virology.

[61]  P. Boulanger,et al.  Crystallization, enzymatic cleavage, and the polarity of the adenovirus type 2 fiber. , 1987, Virology.

[62]  F. Arisaka,et al.  Isolation and characterization of the bacteriophage T4 tail-associated lysozyme , 1985, Journal of virology.

[63]  I. Ørskov,et al.  Summary of a Workshop on the Clone Concept in the Epidemiology, Taxonomy, and Evolution of the Enterobacteriaceae and other Bacteria , 1983 .

[64]  N M Green,et al.  Evidence for a repeating cross‐beta sheet structure in the adenovirus fibre. , 1983, The EMBO journal.

[65]  I. Katsura Tail Assembly and Injection , 1983 .

[66]  I. Orskov,et al.  From the national institutes of health. Summary of a workshop on the clone concept in the epidemiology, taxonomy, and evolution of the enterobacteriaceae and other bacteria. , 1983, The Journal of infectious diseases.

[67]  I. Wilson,et al.  Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution , 1981, Nature.

[68]  W. McClain,et al.  Baseplate protein of bacteriophage T4 with both structural and lytic functions , 1980, Journal of virology.

[69]  R. Crowther Mutants of bacteriophage T4 that produce infective fibreless particles. , 1980, Journal of Molecular Biology.

[70]  J. Blok,et al.  Effect of calcium ions on the infection of Bacillus subtilis by bacteriophage SF 6. , 1979, The Journal of general virology.

[71]  W. Wood,et al.  Attachment of tail fibers in bacteriophage T4 assembly: role of the phage whiskers. , 1979, Journal of molecular biology.

[72]  R A Crowther,et al.  Molecular reorganization in the hexagon to star transition of the baseplate of bacteriophage T4. , 1977, Journal of molecular biology.

[73]  M. J. Harvey,et al.  The potential of Ultrogel®, an agarose‐polyacrylamide copolymer, as a matrix for affinity chromatography , 1976, FEBS letters.

[74]  S. Iwashita,et al.  Enzymic and molecular properties of base-plate parts of bacteriophage P22. , 1976, European journal of biochemistry.

[75]  J. King,et al.  Bacteriophage T4 tail assembly: structural proteins and their genetic identification. , 1973, Journal of molecular biology.

[76]  J. King,et al.  Polypeptides of the tail fibres of bacteriophage T4. , 1971, Journal of molecular biology.

[77]  L. Simon The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. 3. Membrane-associated intracellular bacteriophages. , 1969, Virology.

[78]  L. Simon,et al.  The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. I. Attachment and penetration. , 1967, Virology.