The Stokes problem with Navier slip boundary condition: Minimal fractional Sobolev regularity of the domain

We prove well-posedness in reflexive Sobolev spaces of weak solutions to the stationary Stokes problem with Navier slip boundary condition over bounded domains $\Omega$ of $\mathbb{R}^n$ of class $W^{2-1/s}_s$, $s>n$. Since such domains are of class $C^{1,1-n/s}$, our result improves upon the recent one by Amrouche-Seloula, who assume $\Omega$ to be of class $C^{1,1}$. We deal with the slip boundary condition directly via a new localization technique, which features domain, space and operator decompositions. To flatten the boundary of $\Omega$ locally, we construct a novel $W^2_s$ diffeomorphism for $\Omega$ of class $W^{2-1/s}_s$. The fractional regularity gain, from $2-1/s$ to $2$, guarantees that the Piola transform is of class $W^1_s$. This allows us to transform $W^1_r$ vector fields without changing their regularity, provided $r\le s$, and preserve the unit normal which is H\"older. It is in this sense that the boundary regularity $W^{2-1/s}_s$ seems to be minimal.

[1]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[2]  G. Burton Sobolev Spaces , 2013 .

[3]  Piotr Gwiazda,et al.  On Unsteady Flows of Implicitly Constituted Incompressible Fluids , 2012, SIAM J. Math. Anal..

[4]  Matthew Wright,et al.  Boundary value problems for the Stokes system in arbitrary Lipschitz domains , 2011 .

[5]  Giovanni P. Galdi,et al.  An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .

[6]  C. R. Grisanti,et al.  Reducing slip boundary value problems from the half to the whole space. Applications to inviscid limits and to non-Newtonian fluids , 2011 .

[7]  Marta Lewicka,et al.  The uniform Korn–Poincaré inequality in thin domains , 2008, 0803.0355.

[8]  Chérif Amrouche,et al.  ON THE STOKES EQUATIONS WITH THE NAVIER-TYPE BOUNDARY CONDITIONS , 2011 .

[9]  Hantaek Bae,et al.  Solvability of the free boundary value problem of the Navier-Stokes equations , 2010 .

[10]  V. Solonnikov,et al.  On the local solvability of free boundary problem for the Navier–Stokes equations , 2010 .

[11]  Paola F. Antonietti,et al.  Modelling and numerical simulation of the polymeric extrusion process in textile products , 2010 .

[12]  L. Berselli Some results on the Navier-Stokes equations with Navier boundary conditions , 2010 .

[13]  K. R. Rajagopal,et al.  Mathematical Analysis of Unsteady Flows of Fluids with Pressure, Shear-Rate, and Temperature Dependent Material Moduli that Slip at Solid Boundaries , 2009, SIAM J. Math. Anal..

[14]  J. Málek,et al.  A Navier–Stokes–Fourier system for incompressible fluids with temperature dependent material coefficients , 2009 .

[15]  M. Mitrea,et al.  The nonlinear Hodge-Navier-Stokes equations in Lipschitz domains , 2009, Differential and Integral Equations.

[16]  Matthew MacDonald,et al.  Shapes and Geometries , 1987 .

[17]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[18]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[19]  Kumbakonam R. Rajagopal,et al.  Navier's slip and evolutionary Navier-Stokes like systems with pressure and shear-rate dependent viscosity , 2007 .

[20]  Free boundary problem of steady incompressible flow with contact angle π 2 , 2005 .

[21]  H. Beirão da Veiga,et al.  Regularity of solutions to a non homogeneous boundary value problem for general Stokes systems in R~+^n , 2005 .

[22]  Ricardo G. Durán,et al.  THE KORN INEQUALITY FOR JONES DOMAINS , 2004 .

[23]  M. Padula,et al.  Steady flows of compressible fluids in a rigid container with upper free boundary , 2004 .

[24]  H. B. Veiga,et al.  Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions , 2004 .

[25]  Hi Jun Choe,et al.  The Stokes problem for Lipschitz domains , 2002 .

[26]  Daniel Z. Zanger The Inhomogeneous Neumann Problem in Lipschitz Domains , 2000 .

[27]  M. Delfour,et al.  Shape analysis via dis-tance functions: Local theory , 1998 .

[28]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[29]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[30]  V. A. Solonnikov,et al.  On some free boundary problems for the Navier-Stokes equations with moving contact points and lines , 1995 .

[31]  R. Farwig A note on the reflection principle for the biharmonic equation and the Stokes system , 1994 .

[32]  H. Kozono,et al.  On a new class of generalized solutions for the Stokes equations in exterior domains , 1992 .

[33]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[34]  G. Galdi,et al.  Existence, uniqueness and Lq-estimates for the stokes problem in an exterior domain , 1990 .

[35]  The functional calculus for the laplacian on Lipschitz domains , 1989 .

[36]  Carlos E. Kenig,et al.  Boundary value problems for the systems of elastostatics in Lipschitz domains , 1988 .

[37]  Carlos E. Kenig,et al.  The Dirichlet problem for the Stokes system on Lipschitz domains , 1988 .

[38]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[39]  M. Zlámal,et al.  Free boundary problems for stokes' flows and finite element methods , 1986 .

[40]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[41]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[42]  Jürgen Moser,et al.  A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations , 1960 .