Extending description logics with uncertainty reasoning in possibilistic logic

Possibilistic logic provides a convenient tool for dealing with uncertainty and handling inconsistency. In this paper, we propose possibilistic description logics as an extension of description logics, which are a family of well‐known ontology languages. We first give the syntax and semantics of possibilistic description logics and define several inference services in possibilistic description logics. We show that these inference serviced can be reduced to the task of computing the inconsistency degree of a knowledge base in possibilistic description logics. Since possibilistic inference services suffer from the drowning problem, that is, axioms whose confidence degrees are less than or equal to the inconsistency are not used, we consider a drowning‐free variant of possibilistic inference, called linear order inference. We propose an algorithm for computing the inconsistency degree of a possibilistic description logic knowledge base and an algorithm for the linear order inference. We consider the impact of our possibilistic description logics on ontology learning and ontology merging. Finally, we implement these algorithms and provide some interesting evaluation results. © 2011 Wiley Periodicals, Inc.

[1]  Didier Dubois,et al.  Epistemic Entrenchment and Possibilistic Logic , 1991, Artif. Intell..

[2]  York Sure-Vetter,et al.  Learning Disjointness , 2007, ESWC.

[3]  Frank van Harmelen,et al.  A Framework for Handling Inconsistency in Changing Ontologies , 2005, SEMWEB.

[4]  Thomas Lukasiewicz,et al.  Expressive probabilistic description logics , 2008, Artif. Intell..

[5]  Umberto Straccia,et al.  Reasoning within Fuzzy Description Logics , 2011, J. Artif. Intell. Res..

[6]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[7]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[8]  Ian Horrocks,et al.  A Tableaux Decision Procedure for SHOIQ , 2005, IJCAI.

[9]  Gert Smolka,et al.  Attributive Concept Descriptions with Complements , 1991, Artif. Intell..

[10]  Jeff Z. Pan,et al.  Inconsistencies, Negations and Changes in Ontologies , 2006, AAAI.

[11]  Guilin Qi,et al.  A Conflict-based Operator for Mapping Revision , 2009, Description Logics.

[12]  Didier Dubois,et al.  Representing Default Rules in Possibilistic Logic , 1992, KR.

[13]  Guilin Qi,et al.  Extending Description Logics with Uncertainty Reasoning in Possibilistic Logic , 2007, ECSQARU.

[14]  Guilin Qi,et al.  A Tableau Algorithm for Possibilistic Description Logic , 2008, ASWC.

[15]  J. Lang Possibilistic Logic: Complexity and Algorithms , 2000 .

[16]  Silvana Castano,et al.  Results of the HMatch Ontology Matchmaker in OAEI 2006 , 2006, Ontology Matching.

[17]  Johanna Völker,et al.  Ontology Learning and Reasoning - Dealing with Uncertainty and Inconsistency , 2005, ISWC-URSW.

[18]  Manfred Jaeger,et al.  Probabilistic Reasoning in Terminological Logics , 1994, KR.

[19]  Thomas Lukasiewicz,et al.  P-SHOQ(D): A Probabilistic Extension of SHOQ(D) for Probabilistic Ontologies in the Semantic Web , 2002, JELIA.

[20]  Arie Tzvieli Possibility theory: An approach to computerized processing of uncertainty , 1990, J. Am. Soc. Inf. Sci..

[21]  Ian Horrocks,et al.  Ontology Integration Using Mappings: Towards Getting the Right Logical Consequences , 2009, ESWC.

[22]  Jochen Heinsohn,et al.  Probabilistic Description Logics , 1994, UAI.

[23]  H. Prade,et al.  Possibilistic logic , 1994 .

[24]  Didier Dubois,et al.  Possibility Theory, Probability Theory and Multiple-Valued Logics: A Clarification , 2001, Annals of Mathematics and Artificial Intelligence.

[25]  Michael Mortimer,et al.  On languages with two variables , 1975, Math. Log. Q..

[26]  Didier Dubois,et al.  Possibility Theory: Qualitative and Quantitative Aspects , 1998 .

[27]  Andrea Calì,et al.  Tightly Coupled Probabilistic Description Logic Programs for the Semantic Web , 2009, J. Data Semant..

[28]  Jianfeng Du,et al.  Lexicographical Inference over Inconsistent DL-Based Ontologies , 2008, RR.

[29]  G. Stamou,et al.  Reasoning with Very Expressive Fuzzy Description Logics , 2007, J. Artif. Intell. Res..

[30]  Bernhard Hollunder An alternative proof method for possibilistic logic and its application to terminological logics , 1994, Int. J. Approx. Reason..

[31]  Jürg Kohlas,et al.  Handbook of Defeasible Reasoning and Uncertainty Management Systems , 2000 .

[32]  Umberto Straccia,et al.  Managing uncertainty and vagueness in description logics for the Semantic Web , 2008, J. Web Semant..

[33]  Didier Dubois,et al.  Possibilistic uncertainty and fuzzy features in description logic. A preliminary discussion , 2006, Fuzzy Logic and the Semantic Web.

[34]  Alexander Borgida,et al.  On the relationship between description logic and predicate logic queries , 1994, CIKM '94.

[35]  Heiner Stuckenschmidt,et al.  Applying Logical Constraints to Ontology Matching , 2007, KI.

[36]  Thomas Lukasiewicz,et al.  Probabilistic Default Reasoning with Conditional Constraints , 2000, Annals of Mathematics and Artificial Intelligence.

[37]  Luciano Serafini,et al.  Distributed Description Logics: Assimilating Information from Peer Sources , 2003, J. Data Semant..

[38]  Pierre Marquis,et al.  On Stratified Belief Base Compilation , 2004, Annals of Mathematics and Artificial Intelligence.

[39]  Didier Dubois,et al.  Possibilistic logic : a retrospective and prospective view , 2003 .

[40]  Didier Dubois,et al.  Inconsistency Management and Prioritized Syntax-Based Entailment , 1993, IJCAI.

[41]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[42]  Odile Papini,et al.  Reasoning with partially ordered information in a possibilistic logic framework , 2004, Fuzzy Sets Syst..