Strategies for effectively visualizing 3D flow with volume LIC

This paper discusses strategies for effectively portraying 3D flow using volume line integral convolution. Issues include defining an appropriate input texture, clarifying the distinct identities and relative depths of the advected texture elements, and selectively highlighting regions of interest in both the input and output volumes. Apart from offering insights into the greater potential of 3D LIC as a method for effectively representing flow in a volume, a principal contribution of this work is the suggestion of a technique for generating and rendering 3D visibility-impeding "halos" that can help to intuitively indicate the presence of depth discontinuities between contiguous elements in a projection and thereby clarify the 3D spatial organization of elements in the flow. The proposed techniques are applied to the visualization of a hot, supersonic, laminar jet exiting into a colder, subsonic coflow.

[1]  Nelson Max,et al.  Texture splats for 3D vector and scalar field visualization , 1993 .

[2]  Werner Purgathofer,et al.  Animating flow fields: rendering of oriented line integral convolution , 1997, Proceedings. Computer Animation '97 (Cat. No.97TB100120).

[3]  John M. Seiner,et al.  Numerical Simulation of Mixing Enhancement in a Hot Supersonic Jet , 1997 .

[4]  Ken-ichi Anjyo,et al.  A simple method for extracting the natural beauty of hair , 1992, SIGGRAPH.

[5]  K. Nakayama,et al.  Real world occlusion constraints and binocular rivalry , 1990, Vision Research.

[6]  Thomas Ertl,et al.  Line Integral Convolution on triangulated surfaces , 1997 .

[7]  H. Hege,et al.  Fast Line Integral Convolution for Arbitrary Surfaces in 3D , 1997, VisMath.

[8]  Victoria Interrante,et al.  Illustrating surface shape in volume data via principal direction-driven 3D line integral convolution , 1997, SIGGRAPH.

[9]  Hans-Christian Hege,et al.  Interactive Visualiztion of 3D-Vector Fields using Illuminated Streamlines , 1996, IEEE Visualization.

[10]  Nelson L. Max,et al.  Direct volume visualization of three-dimensional vector fields , 1992, VVS.

[11]  Takafumi Saito,et al.  Comprehensible rendering of 3-D shapes , 1990, SIGGRAPH.

[12]  Hans-Christian Hege,et al.  Fast and resolution independent line integral convolution , 1995, SIGGRAPH.

[13]  David C. Banks,et al.  Multi-frequency noise for LIC , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[14]  Lisa K. Forssell Visualizing flow over curvilinear grid surfaces using line integral convolution , 1994, Proceedings Visualization '94.

[15]  Hans-Christian Hege,et al.  Fast Display of Illuminated Field Lines , 1997, IEEE Trans. Vis. Comput. Graph..

[16]  B Rogers,et al.  Motion Parallax as an Independent Cue for Depth Perception , 1979, Perception.

[17]  David Banks,et al.  Image-guided streamline placement , 1996, SIGGRAPH.

[18]  Michael F. Cohen,et al.  Automatic illustration of 3D geometric models: lines , 1990, I3D '90.

[19]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[20]  Nelson L. Max,et al.  Visualizing 3D velocity fields near contour surfaces , 1994, Proceedings Visualization '94.

[21]  Kwan-Liu Ma,et al.  Visualizing vector fields using line integral convolution and dye advection , 1996, Proceedings of 1996 Symposium on Volume Visualization.

[22]  R. Hetherington The Perception of the Visual World , 1952 .

[23]  Andrea J. van Doorn,et al.  Relief: pictorial and otherwise , 1995, Image Vis. Comput..

[24]  H.-C. Hege,et al.  Interactive visualization of 3D-vector fields using illuminated stream lines , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[25]  A Yonas,et al.  Development of Sensitivity to Information Provided by Cast Shadows in Pictures , 1978, Perception.

[26]  Nelson Max,et al.  Texture splats for 3D scalar and vector field visualization , 1993, Proceedings Visualization '93.

[27]  David C. Banks,et al.  Illumination in diverse codimensions , 1994, SIGGRAPH.

[28]  J. Todd,et al.  Ordinal structure in the visual perception and cognition of smoothly curved surfaces. , 1989, Psychological review.