Evolution of Metabolisms: A New Method for the Comparison of Metabolic Pathways Using Genomics Information

The abundance of information provided by completely sequenced genomes defines a starting point for new insights in the multilevel organization of organisms and their evolution. At the lowest level enzymes and other protein complexes are formed by aggregating multiple polypeptides. At a higher level enzymes group conceptually into metabolic pathways as part of a dynamic information-processing system, and substrates are processed by enzymes yielding other substrates. A method based on a combination of sequence information with graph topology of the underlying pathway is presented. With this approach pathways of different organisms are related to each other by phylogenetic analysis, extending conventional phylogenetic analysis of individual enzymes. The new method is applied to pathways related to electron transfer and to the Krebs citric acid cycle. In addition to providing a more comprehensive understanding of similarities and differences between organisms, this method indicates different evolutionary rates between substrates and enzymes.

[1]  L. Orgel Evolution of the genetic apparatus. , 1968, Journal of molecular biology.

[2]  M. O. Dayhoff,et al.  Atlas of protein sequence and structure , 1965 .

[3]  C. Woese The universal ancestor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[4]  T. Conway,et al.  Evolution of carbohydrate metabolic pathways. , 1996, Research in microbiology.

[5]  Sidney W. Fox,et al.  The origins of prebiological systems and of their molecular matrices , 1965 .

[6]  A. Oparin [The origin of life]. , 1938, Nordisk medicin.

[7]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[8]  Peter D. Karp,et al.  EcoCyc: Encyclopedia of Escherichia coli genes and metabolism , 1998, Nucleic Acids Res..

[9]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[10]  Y. Nakamura,et al.  Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement). , 1996, DNA research : an international journal for rapid publication of reports on genes and genomes.

[11]  L. Hederstedt Krebs´ citric acid cycle , 1993 .

[12]  R. Huber,et al.  The complete genome of the hyperthermophilic bacterium Aquifex aeolicus , 1998, Nature.

[13]  F. Lipmann,et al.  Projecting Backward from the Present Stage of Evolution of Biosynthesis , 1965 .

[14]  André Goffeau,et al.  The yeast genome directory. , 1997, Nature.

[15]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[16]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[17]  N. Pace A molecular view of microbial diversity and the biosphere. , 1997, Science.

[18]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[19]  W. Fitch Distinguishing homologous from analogous proteins. , 1970, Systematic zoology.

[20]  G. Church,et al.  Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics , 1997, Journal of bacteriology.

[21]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[22]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[23]  Daniel H. Huson,et al.  SplitsTree: analyzing and visualizing evolutionary data , 1998, Bioinform..

[24]  F. Robb,et al.  Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. , 1998, DNA research : an international journal for rapid publication of reports on genes and genomes.

[25]  C R Woese,et al.  Erratum: The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1998, Nature.

[26]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[27]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[28]  H. Gest Evolution of the citric acid cycle and respiratory energy conversion in prokaryotes , 1981 .

[29]  S. Salzberg,et al.  Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi , 1997, Nature.

[30]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[31]  H. Hilbert,et al.  Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. , 1996, Nucleic acids research.

[32]  R. Overbeek,et al.  Representation of function: the next step. , 1997, Gene.

[33]  K. Popper The Poverty of Historicism , 1959 .

[34]  S. Salzberg,et al.  Complete genome sequence of Treponema pallidum, the syphilis spirochete. , 1998, Science.

[35]  Mark Borodovsky,et al.  The complete genome sequence of the gastric pathogen Helicobacter pylori , 1997, Nature.

[36]  S. Henikoff,et al.  Amino acid substitution matrices from protein blocks. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[37]  G. Wächtershäuser,et al.  Evolution of the first metabolic cycles. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[38]  S. Miller A production of amino acids under possible primitive earth conditions. , 1953, Science.