New Types of Electron Pitch Angle Distributions on Mars: Funnel and Skirt Distributions

Using high‐resolution Solar Wind Electron Analyzer data from the Mars Atmosphere and Volatile EvolutioN spacecraft, we report two new types of electron pitch angle distributions (PADs) in the Martian plasma environment. The first type of electron PADs, showing pitch angle primally around 45° $45{}^{\circ}$ , is termed funnel distribution, which was observed near the terminator and at about 1,200 km altitude. The second type of electron PADs, showing pitch angle primally around 135° $135{}^{\circ}$ , is termed skirt distribution, which was detected on the nightside and at about 1,250 km altitude. The electrons of funnel and skirt distributions do not exhibit any photoelectron signatures and are shown to originate from the solar wind. Through the fitting analysis, we find that the electrons showing both funnel and skirt PADs are thermal electron populations and suprathermal electron populations. In addition, the possibilities that such two types of electron pitch angle distributions corresponding to magnetic field configurations are also discussed.

[1]  Y. Liu,et al.  Characteristics of Electron Pitch-angle Distribution in the Flapping Magnetotail , 2022, The Astrophysical Journal.

[2]  Y. Liu,et al.  First Observation of Lower Hybrid Drift Waves at the Edge of the Current Sheet in the Martian Magnetotail , 2022, The Astrophysical Journal.

[3]  Y. Liu,et al.  Electron Rolling-pin Distribution Inside Magnetic Hole , 2022, The Astrophysical Journal.

[4]  J. Cao,et al.  Formation of Rolling‐Pin Distribution of Suprathermal Electrons Behind Dipolarization Fronts , 2022, Journal of Geophysical Research: Space Physics.

[5]  Y. Liu,et al.  Broadband Electrostatic Waves Behind Dipolarization Front: Observations and Analyses , 2021, Journal of Geophysical Research: Space Physics.

[6]  Z. Zhang,et al.  In Situ Detection of Kinetic-size Magnetic Holes in the Martian Magnetosheath , 2021, The Astrophysical Journal.

[7]  Y. Liu,et al.  Betatron Cooling of Electrons in Martian Magnetotail , 2021, Geophysical Research Letters.

[8]  M. Benna,et al.  Escape of CO2+ and Other Heavy Minor Ions From the Ionosphere of Mars , 2020, Journal of Geophysical Research: Space Physics.

[9]  Xiaojun Xu,et al.  Plasma and magnetic-field structures near the Martian induced magnetosphere boundary , 2020 .

[10]  B. Jakosky,et al.  The Influence of Interplanetary Magnetic Field Direction on Martian Crustal Magnetic Field Topology , 2020, Geophysical Research Letters.

[11]  B. Jakosky,et al.  Variations in Nightside Magnetic Field Topology at Mars , 2020, Geophysical Research Letters.

[12]  B. Ni,et al.  Bidirectional electron conic observations for photoelectrons in the Martian ionosphere , 2020, Earth and Planetary Physics.

[13]  D. Mitchell,et al.  Inverted‐V Electron Acceleration Events Concurring With Localized Auroral Observations at Mars by MAVEN , 2020, Geophysical Research Letters.

[14]  Z. Wang,et al.  A New Theory for Energetic Electron Generation Behind Dipolarization Front , 2020, Geophysical Research Letters.

[15]  Y. Khotyaintsev,et al.  First Measurements of Electrons and Waves inside an Electrostatic Solitary Wave. , 2020, Physical review letters.

[16]  E. Grigorenko,et al.  Magnetotail dipolarization fronts and particle acceleration: A review , 2019, Science China Earth Sciences.

[17]  Alexander D. Shane,et al.  Misbehaving High‐Energy Electrons: Evidence in Support of Ubiquitous Wave‐Particle Interactions on Dayside Martian Closed Crustal Magnetic Fields , 2019, Geophysical Research Letters.

[18]  D. Mitchell,et al.  Spectral Analysis of Accelerated Electron Populations at Mars , 2019, Journal of Geophysical Research: Space Physics.

[19]  Xiaocan Li,et al.  Energetic Electron Acceleration in Unconfined Reconnection Jets , 2019, The Astrophysical Journal.

[20]  D. Mitchell,et al.  Thin Current Sheets of Sub‐ion Scales observed by MAVEN in the Martian Magnetotail , 2019, Geophysical Research Letters.

[21]  J. Burch,et al.  Evidence of Electron Acceleration at a Reconnecting Magnetopause , 2019, Geophysical Research Letters.

[22]  Y. Liu,et al.  Parallel Electron Heating by Tangential Discontinuity in the Turbulent Magnetosheath , 2019, The Astrophysical Journal.

[23]  J. Burch,et al.  Energy Range of Electron Rolling Pin Distribution Behind Dipolarization Front , 2019, Geophysical Research Letters.

[24]  B. Jakosky,et al.  The Influence of Solar Wind Pressure on Martian Crustal Magnetic Field Topology , 2019, Geophysical Research Letters.

[25]  D. Mitchell,et al.  A Technique to Infer Magnetic Topology at Mars and Its Application to the Terminator Region , 2019, Journal of Geophysical Research: Space Physics.

[26]  Y. Liu,et al.  Electron Distribution Functions Around a Reconnection X‐Line Resolved by the FOTE Method , 2019, Geophysical Research Letters.

[27]  A. Vaivads,et al.  Super-efficient Electron Acceleration by an Isolated Magnetic Reconnection , 2019, The Astrophysical Journal.

[28]  B. Jakosky,et al.  Statistical Study of Heavy Ion Outflows From Mars Observed in the Martian‐Induced Magnetotail by MAVEN , 2018, Journal of Geophysical Research: Space Physics.

[29]  B. Jakosky,et al.  A Fast Fermi Acceleration at Mars Bow Shock , 2017, Journal of Geophysical Research: Space Physics.

[30]  Y. Liu,et al.  Betatron Cooling of Suprathermal Electrons in the Terrestrial Magnetotail , 2018, The Astrophysical Journal.

[31]  H. Fu,et al.  Electron Acceleration by Dipolarization Fronts and Magnetic Reconnection: A Quantitative Comparison , 2018 .

[32]  D. Mitchell,et al.  High‐Altitude Closed Magnetic Loops at Mars Observed by MAVEN , 2017 .

[33]  B. Jakosky,et al.  The Effect of Solar Wind Variations on the Escape of Oxygen Ions From Mars Through Different Channels: MAVEN Observations , 2017 .

[34]  D. Mitchell,et al.  Characterization of Low‐Altitude Nightside Martian Magnetic Topology Using Electron Pitch Angle Distributions , 2017 .

[35]  E. Grigorenko,et al.  Imprints of Quasi‐Adiabatic Ion Dynamics on the Current Sheet Structures Observed in the Martian Magnetotail by MAVEN , 2017 .

[36]  V. Angelopoulos,et al.  Mars's magnetotail: Nature's current sheet laboratory , 2017 .

[37]  B. Jakosky,et al.  Martian low‐altitude magnetic topology deduced from MAVEN/SWEA observations , 2016 .

[38]  B. Jakosky,et al.  Photoelectrons and solar ionizing radiation at Mars: Predictions versus MAVEN observations , 2016 .

[39]  J. Rouzaud,et al.  The MAVEN Solar Wind Electron Analyzer , 2016 .

[40]  Bruce M. Jakosky,et al.  The Solar Wind Ion Analyzer for MAVEN , 2015 .

[41]  Bruce M. Jakosky,et al.  First measurements of composition and dynamics of the Martian ionosphere by MAVEN's Neutral Gas and Ion Mass Spectrometer , 2015 .

[42]  Bruce M. Jakosky,et al.  Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel , 2015 .

[43]  B. Jakosky,et al.  Magnetotail dynamics at Mars: Initial MAVEN observations , 2015 .

[44]  B. Jakosky,et al.  Altitude dependence of nightside Martian suprathermal electron depletions as revealed by MAVEN observations , 2015 .

[45]  B. Jakosky,et al.  Discovery of diffuse aurora on Mars , 2015, Science.

[46]  J. Connerney,et al.  The MAVEN Magnetic Field Investigation , 2015 .

[47]  Wolfgang Baumjohann,et al.  Electron pitch angle/energy distribution in the magnetotail , 2014 .

[48]  M. Ashour‐Abdalla,et al.  Wave‐particle interactions during a dipolarization front event , 2014 .

[49]  A. Vaivads,et al.  Energetic electron acceleration by unsteady magnetic reconnection , 2013, Nature Physics.

[50]  R. Lundin,et al.  Phobos 2/ASPERA data revisited: Planetary ion escape rate from Mars near the 1989 solar maximum , 2013 .

[51]  M. Kelley,et al.  The Mars Atmosphere and Volatile Evolution (MAVEN) Mission , 2013 .

[52]  A. Vaivads,et al.  Pitch angle distribution of suprathermal electrons behind dipolarization fronts: A statistical overview , 2012 .

[53]  A. Vaivads,et al.  Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts , 2011 .

[54]  D. Mitchell,et al.  Observation of conical electron distributions over Martian crustal magnetic fields , 2011 .

[55]  R. Lin,et al.  Nightside ionosphere of Mars: Modeling the effects of crustal magnetic fields and electron pitch angle distributions on electron impact ionization , 2009 .

[56]  D. Mitchell,et al.  Electron pitch angle distributions as indicators of magnetic field topology near Mars , 2007 .

[57]  Stas Barabash,et al.  Martian Atmospheric Erosion Rates , 2007, Science.

[58]  D. Mitchell,et al.  A global map of Mars' crustal magnetic field based on electron reflectometry , 2007 .

[59]  M. Maggi,et al.  Structure of the martian wake , 2006 .

[60]  D. Mitchell,et al.  On the origin of aurorae on Mars , 2006 .

[61]  D. Mitchell,et al.  Probing upper thermospheric neutral densities at Mars using electron reflectometry , 2005 .

[62]  D. Mitchell,et al.  Tectonic implications of Mars crustal magnetism. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  D. Mitchell,et al.  Mapping crustal magnetic fields at Mars using electron reflectometry , 2004 .

[64]  Dana Hurley Crider,et al.  The plasma Environment of Mars , 2004 .

[65]  D. Mitchell,et al.  Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars global surveyor observations , 2003 .

[66]  D. Mitchell,et al.  Probing Mars' crustal magnetic field and ionosphere with the MGS Electron Reflectometer , 2001 .

[67]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[68]  Ness,et al.  Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission , 1998, Science.

[69]  R. Lundin,et al.  Observations of electron conies by the Viking satellite , 1996 .

[70]  J. Burch Dynamics Explorer observations of the production of electron conics , 1995 .

[71]  L. Eliasson,et al.  DE 1 and Viking observations associated with electron conical distributions , 1994 .

[72]  J. Burch,et al.  “Electron conic” signatures observed in the nightside auroral zone and over the polar cap , 1985 .