Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment

Self-organized layers of TiO2 nanotubes were formed by electrochemical anodization of Ti in a HF/Na2HPO4 electrolyte. The tubes were treated at 500 °C under a mixed flux of N2 and acetylene (C2H2). The samples were characterized using SEM, XRD and photoelectrochemical measurements. The results show that the acetylene treated tube layers exhibit a significant photoresponse over the whole range of visible light up to the near-IR region (1.5 eV). This carbon doping treatment at comparable mild conditions does not lead to any structural damage to the morphology of the nanotubes.

[1]  Peter Greil,et al.  Hydroxyapatite growth on anodic TiO2 nanotubes. , 2006, Journal of biomedical materials research. Part A.

[2]  H. Kisch,et al.  Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.

[3]  H. Tributsch,et al.  Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania. , 2005, The journal of physical chemistry. B.

[4]  OhnoTeruhisa,et al.  Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light , 2003 .

[5]  S. Yamamoto,et al.  Fluorine-doping in titanium dioxide by ion implantation technique , 2003 .

[6]  Li Lin,et al.  Phosphor-doped Titania —a Novel Photocatalyst Active in Visible Light , 2005 .

[7]  M. Grätzel Dye-sensitized solar cells , 2003 .

[8]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[9]  Richard H. Bube,et al.  Photoelectronic Properties of Semiconductors , 1992 .

[10]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[11]  K. Asai,et al.  Visible Light-Induced Degradation of Methylene Blue on S-doped TiO2 , 2003 .

[12]  Jan M. Macak,et al.  Dye-sensitized anodic TiO2 nanotubes , 2005 .

[13]  Lothar Frey,et al.  Ion Implantation and Annealing for an Efficient N-Doping of TiO2 Nanotubes , 2006 .

[14]  J. Salonen,et al.  Stabilization of porous silicon surface by thermal decomposition of acetylene , 2004 .

[15]  M. Anpo Photocatalysis on titanium oxide catalysts: Approaches in achieving highly efficient reactions and realizing the use of visible light , 1997 .

[16]  Jan M. Macak,et al.  Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes , 2005 .

[17]  Marc Aucouturier,et al.  Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy , 1999 .

[18]  Chuncheng Chen,et al.  Efficient degradation of toxic organic pollutants with Ni2O3/TiO(2-x)Bx under visible irradiation. , 2004, Journal of the American Chemical Society.

[19]  Jan M. Macak,et al.  Titanium oxide nanotubes prepared in phosphate electrolytes , 2005 .

[20]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[21]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[22]  Jan M. Macak,et al.  Smooth anodic TiO2 nanotubes. , 2005, Angewandte Chemie.

[23]  A. Bard,et al.  Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. , 2006, Nano letters.

[24]  J. Macák,et al.  250 µm long anodic TiO2 nanotubes with hexagonal self‐ordering , 2007 .

[25]  Jan M. Macak,et al.  N-Doping of anodic TiO2 nanotubes using heat treatment in ammonia , 2006 .

[26]  Eugeniu Balaur,et al.  Tailoring the wettability of TiO2 nanotube layers , 2005 .

[27]  J. Schoonman,et al.  Addition of carbon to anatase TiO2 by n-hexane treatment- : surface or bulk doping? , 2006 .