A single-cell survey of cellular hierarchy in acute myeloid leukemia

[1]  Dan Zhang,et al.  Construction of a human cell landscape at single-cell level , 2020, Nature.

[2]  A. Leen,et al.  Evaluation of cyclin A1-specific T cells as a potential treatment for acute myeloid leukemia. , 2020, Blood advances.

[3]  P. D. Gopal Krishnan,et al.  Rab GTPases: Emerging Oncogenes and Tumor Suppressive Regulators for the Editing of Survival Pathways in Cancer , 2020, Cancers.

[4]  C. Dinardo,et al.  How I treat acute myeloid leukemia in the era of new drugs. , 2019, Blood.

[5]  G. Calin,et al.  Long Non-coding RNAs in Myeloid Malignancies , 2019, Front. Oncol..

[6]  W. Hiddemann,et al.  Clinical and preclinical characterization of CD99 isoforms in acute myeloid leukemia , 2019, Haematologica.

[7]  Fabian J Theis,et al.  PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells , 2019, Genome biology.

[8]  Martin J. Aryee,et al.  Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics , 2019, Cell.

[9]  G. Pinkus,et al.  Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity , 2019, Cell.

[10]  Guoji Guo,et al.  Revolutionizing immunology with single-cell RNA sequencing , 2019, Cellular & Molecular Immunology.

[11]  V. V. D. van der Velden,et al.  CD34+CD38− leukemic stem cell frequency to predict outcome in acute myeloid leukemia , 2018, Leukemia.

[12]  Howard Y. Chang,et al.  Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA , 2018, bioRxiv.

[13]  X. Thomas,et al.  Ferritin heavy/light chain (FTH1/FTL) expression, serum ferritin levels, and their functional as well as prognostic roles in acute myeloid leukemia , 2018, European journal of haematology.

[14]  G. Martinelli,et al.  Novel Agents for Acute Myeloid Leukemia , 2018, Cancers.

[15]  P. Mitra,et al.  Transcription regulation of MYB: a potential and novel therapeutic target in cancer. , 2018, Annals of translational medicine.

[16]  F. Delom,et al.  The role of protein disulphide isomerase AGR2 in the tumour niche , 2018, Biology of the cell.

[17]  S. Armstrong,et al.  HOXA9 Reprograms the Enhancer Landscape to Promote Leukemogenesis. , 2018, Cancer cell.

[18]  F. Luciani,et al.  High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes , 2018, bioRxiv.

[19]  K. Becker,et al.  The novel immunoglobulin super family receptor SLAMF9 identified in TAM of murine and human melanoma influences pro-inflammatory cytokine secretion and migration , 2018, Cell Death and Disease.

[20]  W. Su,et al.  Rab37 mediates exocytosis of secreted frizzled-related protein 1 to inhibit Wnt signaling and thus suppress lung cancer stemness , 2018, Cell Death & Disease.

[21]  P. A. Futreal,et al.  High-throughput single-cell DNA sequencing of acute myeloid leukemia tumors with droplet microfluidics , 2018, Genome research.

[22]  Ambrose J. Carr,et al.  Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment , 2018, Cell.

[23]  Guoji Guo,et al.  Comparative transcriptomic analysis of hematopoietic system between human and mouse by Microwell-seq , 2018, Cell Discovery.

[24]  G. Tomlinson,et al.  Long-term recovery of quality of life and physical function over three years in adult survivors of acute myeloid leukemia after intensive chemotherapy , 2018, Leukemia.

[25]  D. Treré,et al.  Treating hematological malignancies with drugs inhibiting ribosome biogenesis: when and why , 2018, Journal of Hematology & Oncology.

[26]  Tracy M. Yamawaki,et al.  Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles , 2018, Science.

[27]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[28]  Alexandre David,et al.  The ribosome, (slow) beating heart of cancer (stem) cell , 2018, Oncogenesis.

[29]  Sean C. Bendall,et al.  Single-cell developmental classification of B cell precursor acute lymphoblastic leukemia at diagnosis reveals predictors of relapse , 2018, Nature Medicine.

[30]  Jesse M. Engreitz,et al.  Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis , 2018, Cell.

[31]  Z. J. Huang,et al.  Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor , 2018, Nature Communications.

[32]  Amitava Sengupta,et al.  SMARCB1 Deficiency Integrates Epigenetic Signals to Oncogenic Gene Expression Program Maintenance in Human Acute Myeloid Leukemia , 2018, Molecular Cancer Research.

[33]  S. Orkin,et al.  Mapping the Mouse Cell Atlas by Microwell-Seq , 2018, Cell.

[34]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[35]  N. Wei,et al.  MRPL33 and its splicing regulator hnRNPK are required for mitochondria function and implicated in tumor progression , 2018, Oncogene.

[36]  B. Povinelli,et al.  Single cell analysis of normal and leukemic hematopoiesis. , 2017, Molecular aspects of medicine.

[37]  K. Livak,et al.  High-dimension single-cell analysis applied to cancer. , 2017, Molecular aspects of medicine.

[38]  Q. Deng,et al.  Single-cell RNA sequencing: Technical advancements and biological applications. , 2017, Molecular aspects of medicine.

[39]  A. Olshen,et al.  Heterogeneous resistance to quizartinib in acute myeloid leukemia revealed by single-cell analysis. , 2017, Blood.

[40]  U. Olsson‐Strömberg,et al.  Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML. , 2017, Blood.

[41]  L. Steinmetz,et al.  Human haematopoietic stem cell lineage commitment is a continuous process , 2017, Nature Cell Biology.

[42]  Lars Bullinger,et al.  Genomics of Acute Myeloid Leukemia Diagnosis and Pathways. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[43]  Paolo Piazza,et al.  Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis , 2017, F1000Research.

[44]  M. Konopleva,et al.  Frontline treatment of acute myeloid leukemia in adults. , 2017, Critical reviews in oncology/hematology.

[45]  P. Sicinski,et al.  Cell cycle proteins as promising targets in cancer therapy , 2017, Nature Reviews Cancer.

[46]  Bob Löwenberg,et al.  Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. , 2017, Blood.

[47]  Guoji Guo,et al.  Studying hematopoiesis using single-cell technologies , 2017, Journal of Hematology & Oncology.

[48]  Hannah H. Chang,et al.  Cell Fate Decision as High-Dimensional Critical State Transition , 2016, bioRxiv.

[49]  Mihaela Zavolan,et al.  Patterns of ribosomal protein expression specify normal and malignant human cells , 2016, Genome Biology.

[50]  W. Hiddemann,et al.  Complement cascade gene expression defines novel prognostic subgroups of acute myeloid leukemia. , 2016, Experimental hematology.

[51]  I. Haznedaroglu,et al.  Local bone marrow renin-angiotensin system in the genesis of leukemia and other malignancies. , 2016, European review for medical and pharmacological sciences.

[52]  Anna L. Brown,et al.  Conditional knockout mice demonstrate function of Klf5 as a myeloid transcription factor. , 2016, Blood.

[53]  Mariano J. Alvarez,et al.  Network-based inference of protein activity helps functionalize the genetic landscape of cancer , 2016, Nature Genetics.

[54]  A. Califano,et al.  Network-based inference of protein activity helps functionalize the genetic landscape of cancer , 2016, Nature Genetics.

[55]  Mario Cazzola,et al.  The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. , 2016, Blood.

[56]  Andrea Califano,et al.  ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information , 2016, Bioinform..

[57]  E. Aurell,et al.  Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of stability, and escape , 2016, Proceedings of the National Academy of Sciences.

[58]  M. Tallman,et al.  Emerging therapeutic drugs for AML. , 2016, Blood.

[59]  D. Grimwade,et al.  Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. , 2016, Blood.

[60]  Patrick F. Chinnery,et al.  The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease , 2015, Nature Reviews Genetics.

[61]  C. Pan,et al.  SH3BGRL3 Protein as a Potential Prognostic Biomarker for Urothelial Carcinoma: A Novel Binding Partner of Epidermal Growth Factor Receptor , 2015, Clinical Cancer Research.

[62]  R. Schlenk,et al.  How I treat refractory and early relapsed acute myeloid leukemia. , 2015, Blood.

[63]  P. Linsley,et al.  MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data , 2015, Genome Biology.

[64]  M. Zöller CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells , 2015, Front. Immunol..

[65]  N. Navin,et al.  Advances and applications of single-cell sequencing technologies. , 2015, Molecular cell.

[66]  Chunhe Li,et al.  Quantifying the Landscape for Development and Cancer from a Core Cancer Stem Cell Circuit. , 2015, Cancer research.

[67]  Z. Bortlíček,et al.  Combined Proteomics and Transcriptomics Identifies Carboxypeptidase B1 and Nuclear Factor κB (NF-κB) Associated Proteins as Putative Biomarkers of Metastasis in Low Grade Breast Cancer* , 2015, Molecular & Cellular Proteomics.

[68]  J. Radich,et al.  Single-cell genotyping demonstrates complex clonal diversity in acute myeloid leukemia , 2015, Science Translational Medicine.

[69]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[70]  Roland Eils,et al.  circlize implements and enhances circular visualization in R , 2014, Bioinform..

[71]  Christopher A. Miller,et al.  Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. , 2014, Cancer cell.

[72]  M. Lleonart,et al.  Ribosomal proteins as novel players in tumorigenesis , 2013, Cancer and Metastasis Reviews.

[73]  D. Wallace,et al.  Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. , 2013, Cold Spring Harbor perspectives in biology.

[74]  Stuart Kauffman,et al.  How to escape the cancer attractor: rationale and limitations of multi-target drugs. , 2013, Seminars in cancer biology.

[75]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[76]  E. Estey,et al.  Significance of FAB subclassification of "acute myeloid leukemia, NOS" in the 2008 WHO classification: analysis of 5848 newly diagnosed patients. , 2013, Blood.

[77]  O. Kallioniemi,et al.  c-Jun N-Terminal Kinase Phosphorylation of MARCKSL1 Determines Actin Stability and Migration in Neurons and in Cancer Cells , 2012, Molecular and Cellular Biology.

[78]  A. Verma,et al.  Alterations in the ribosomal machinery in cancer and hematologic disorders , 2012, Journal of Hematology & Oncology.

[79]  G. Thomas,et al.  Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint. , 2012, Genes & development.

[80]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[81]  J. Bertrand,et al.  Sex differences in the GSK3β-mediated survival of adherent leukemic progenitors , 2012, Oncogene.

[82]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[83]  N. Friedman,et al.  Densely Interconnected Transcriptional Circuits Control Cell States in Human Hematopoiesis , 2011, Cell.

[84]  E. Zabarovsky,et al.  Extracellular protease ADAMTS9 suppresses esophageal and nasopharyngeal carcinoma tumor formation by inhibiting angiogenesis. , 2010, Cancer research.

[85]  P. Cahan,et al.  POU4F1 is associated with t(8;21) acute myeloid leukemia and contributes directly to its unique transcriptional signature , 2010, Leukemia.

[86]  Mirko Francesconi,et al.  Overcoming resistance to conventional drugs in Ewing sarcoma and identification of molecular predictors of outcome. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[87]  J. Thomson,et al.  Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. , 2006, Blood.

[88]  S. Ellis,et al.  Ribosomes and marrow failure: coincidental association or molecular paradigm? , 2006, Blood.

[89]  Eric Vivier,et al.  KARAP/DAP12/TYROBP: three names and a multiplicity of biological functions , 2005, European journal of immunology.

[90]  Gabriel S. Eichler,et al.  Cell fates as high-dimensional attractor states of a complex gene regulatory network. , 2005, Physical review letters.

[91]  A. Baron,et al.  Hox expression in AML identifies a distinct subset of patients with intermediate cytogenetics , 2004, Leukemia.

[92]  T. Naoe,et al.  Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. , 2004, Blood.

[93]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[94]  Y. Kadono,et al.  Jun Dimerization Protein 2 (JDP2), a Member of the AP-1 Family of Transcription Factor, Mediates Osteoclast Differentiation Induced by RANKL , 2003, The Journal of experimental medicine.

[95]  P. Angel,et al.  Collagenase‐3 (MMP‐13) and Integral Membrane Protein 2a (Itm2a) are Marker Genes of Chondrogenic/Osteoblastic Cells in Bone Formation: Sequential Temporal, and Spatial Expression of Itm2a, Alkaline Phosphatase, MMP‐13, and Osteocalcin in the Mouse , 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[96]  S. Okada,et al.  Prolonged expression of c-fos suppresses cell cycle entry of dormant hematopoietic stem cells. , 1999, Blood.

[97]  P. Musto,et al.  Prognostic relevance of serum beta 2-microglobulin in acute myeloid leukemia. , 1992, Leukemia.

[98]  A. Scovassi,et al.  Prognostic significance of terminal transferase and adenosine deaminase in acute and chronic myeloid leukemia. , 1982, Blood.

[99]  S. Counce The Strategy of the Genes , 1958, The Yale Journal of Biology and Medicine.

[100]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[101]  A. Scovassi,et al.  Prognostic significance of terminal transferase and adenosine deaminase in acute and chronic myeloid leukemia. , 1982, Blood.

[102]  C. Waddington The strategy of the genes , 1957 .