Dispersion of Hydrophobic Co Supracrystal in Aqueous Solution.

Assembly of nanoparticles into supracrystals provides a class of materials with interesting optical and magnetic properties. However, supracrystals are mostly obtained from hydrophobic particles and therefore cannot be manipulated in aqueous systems, limiting their range of applications. Here, we show that hydrophobic-shaped supracrystals self-assembled from 8.2 nm cobalt nanoparticles can be dispersed in water by coating the supracrystals with lipid vesicles. A careful characterization of these composite objects provides insights into their structure at different length scales. This composite, suspended in water, retains the crystalline structure and paramagnetic properties of the starting material, which can be moved with an applied magnetic field.

[1]  P. Albouy,et al.  Synthesis and Self-Assembly Behavior of Charged Au Nanocrystals in Aqueous Solution , 2015 .

[2]  Lih-Juann Chen,et al.  Surfactant-directed fabrication of supercrystals from the assembly of polyhedral Au-Pd core-shell nanocrystals and their electrical and optical properties. , 2015, Journal of the American Chemical Society.

[3]  Michael H. Huang,et al.  Formation of supercrystals through self-assembly of polyhedral nanocrystals , 2015 .

[4]  E. Saiz,et al.  Bioinspired structural materials. , 2014, Nature materials.

[5]  Jingjing Wei,et al.  Ag nanocrystals: 1. Effect of ligands on plasmonic properties. , 2014, The journal of physical chemistry. B.

[6]  M. Pileni,et al.  How nanocrystallinity and order define the magnetic properties of ε-Co supracrystals , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Z. Tang,et al.  Crucial role of anions on arrangement of Cu₂S nanocrystal superstructures. , 2014, Small.

[8]  M. Lattuada,et al.  Insertion of nanoparticle clusters into vesicle bilayers. , 2014, ACS nano.

[9]  K. Salaita,et al.  Quantum Dots Encapsulated within Phospholipid Membranes: Phase-Dependent Structure, Photostability, and Site-Selective Functionalization , 2014, Journal of the American Chemical Society.

[10]  M. Pileni,et al.  Nanocrystals: why do silver and gold N-heterocyclic carbene precursors behave differently? , 2013, Langmuir : the ACS journal of surfaces and colloids.

[11]  M. Pileni,et al.  Impact of nanocrystallinity segregation on the growth and morphology of nanocrystal superlattices , 2013, Nano Research.

[12]  M. A. García,et al.  Colloidal Ordered Assemblies in a Polymer Shell—A Novel Type of Magnetic Nanobeads for Theranostic Applications , 2013 .

[13]  Jun Chen,et al.  Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied by correlated optical microspectrophotometry and electron microscopy. , 2013, Nano letters.

[14]  B. Korgel,et al.  Chains, sheets, and droplets: assemblies of hydrophobic gold nanocrystals with saturated phosphatidylcholine lipid and squalene. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[15]  P. Albouy,et al.  Crystallinity segregation upon selective self-assembling of gold colloidal single nanocrystals. , 2012, Nano letters.

[16]  B. Korgel,et al.  Chloroform-enhanced incorporation of hydrophobic gold nanocrystals into dioleoylphosphatidylcholine (DOPC) vesicle membranes. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[17]  Z. Tang,et al.  Monodisperse Hollow Supraparticles via Selective Oxidation , 2012 .

[18]  M. Pileni,et al.  Unexpected electronic properties of micrometer-thick supracrystals of Au nanocrystals. , 2012, Nano letters.

[19]  P. Albouy,et al.  Simultaneous growths of gold colloidal crystals. , 2012, Journal of the American Chemical Society.

[20]  Zhiyong Tang,et al.  Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. , 2011, Nature nanotechnology.

[21]  Marie-Paule Pileni,et al.  How To Control the Crystalline Structure of Supracrystals of 5-nm Silver Nanocrystals , 2011 .

[22]  Z. Tang,et al.  Design and application of inorganic nanoparticle superstructures: current status and future challenges. , 2011, Small.

[23]  Lei Jiang,et al.  Bio-inspired design of multiscale structures for function integration , 2011 .

[24]  M. Textor,et al.  Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. , 2011, Nano letters.

[25]  J. M. Kikkawa,et al.  Collective dipolar interactions in self-assembled magnetic binary nanocrystal superlattice membranes. , 2010, Nano letters.

[26]  George C. Schatz,et al.  Reversing the size-dependence of surface plasmon resonances , 2010, Proceedings of the National Academy of Sciences.

[27]  M. Pileni Self assembly of inorganic nanocrystals in 3D supra crystals: Intrinsic properties , 2009 .

[28]  Osamu Sato,et al.  Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands. , 2009, Accounts of chemical research.

[29]  Radislav A. Potyrailo,et al.  Morpho butterfly wing scales demonstrate highly selective vapour response , 2007 .

[30]  Gregory Gregoriadis,et al.  Liposome Technology, Volume I: Liposome Preparation and Related Techniques, Third Edition , 2006 .

[31]  Bartosz A. Grzybowski,et al.  Electrostatic Self-Assembly of Binary Nanoparticle Crystals with a Diamond-Like Lattice , 2006, Science.

[32]  P. Vukusic,et al.  Directionally Controlled Fluorescence Emission in Butterflies , 2005, Science.

[33]  K. Autumn,et al.  Evidence for self-cleaning in gecko setae. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. Zi,et al.  Coloration strategies in peacock feathers , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Pileni,et al.  Synthesis of Well-Defined and Low Size Distribution Cobalt Nanocrystals: The Limited Influence of Reverse Micelles , 2003 .

[36]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[37]  M. Pileni,et al.  Hysteresis curve of magnetic nanocrystals monolayers: Influence of the structure , 2003 .

[38]  Vincent Noireaux,et al.  In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.

[39]  M. Bally,et al.  Controlling the Physical Behavior and Biological Performance of Liposome Formulations Through Use of Surface Grafted Poly(ethylene Glycol) , 2002, Bioscience reports.

[40]  A. Rogach,et al.  A New Approach to Crystallization of CdSe Nanoparticles into Ordered Three‐Dimensional Superlattices , 2001 .

[41]  Taeghwan Hyeon,et al.  Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. , 2001, Journal of the American Chemical Society.

[42]  Joanna Aizenberg,et al.  Calcitic microlenses as part of the photoreceptor system in brittlestars , 2001, Nature.

[43]  M. Pileni Nanocrystal Self-Assemblies: Fabrication and Collective Properties , 2001 .

[44]  J. Nagle,et al.  Structure of lipid bilayers. , 2000, Biochimica et biophysica acta.

[45]  M. Bawendi,et al.  A Solution-Phase Chemical Approach to a New Crystal Structure of Cobalt. , 1999, Angewandte Chemie.

[46]  Christophe Petit,et al.  Optical Properties of Self-Assembled 2D and 3D Superlattices of Silver Nanoparticles , 1998 .

[47]  M. Pileni,et al.  Self-Organization of Magnetic Nanosized Cobalt Particles** , 1998 .

[48]  K. Edwards,et al.  Effect of polyethyleneglycol-phospholipids on aggregate structure in preparations of small unilamellar liposomes. , 1997, Biophysical journal.

[49]  Leaf Huang,et al.  Interaction of PEG-phospholipid conjugates with phospholipid: implications in liposomal drug delivery , 1995 .