Likelihood-Based Inference for Max-Stable Processes

The last decade has seen max-stable processes emerge as a common tool for the statistical modeling of spatial extremes. However, their application is complicated due to the unavailability of the multivariate density function, and so likelihood-based methods remain far from providing a complete and flexible framework for inference. In this article we develop inferentially practical, likelihood-based methods for fitting max-stable processes derived from a composite-likelihood approach. The procedure is sufficiently reliable and versatile to permit the simultaneous modeling of marginal and dependence parameters in the spatial context at a moderate computational cost. The utility of this methodology is examined via simulation, and illustrated by the analysis of United States precipitation extremes.

[1]  Zhe Jiang,et al.  Spatial Statistics , 2013 .

[2]  Matt P. Wand,et al.  Vector Differential Calculus in Statistics , 2002 .

[3]  C. Varin On composite marginal likelihoods , 2008 .

[4]  S. Resnick,et al.  Limit theory for multivariate sample extremes , 1977 .

[5]  R. L. Smith EXTREME VALUES, POINT PROCESSES AND REGULAR VARIATION (Applied Probability 4) , 1988 .

[6]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[7]  Martin Schlather,et al.  Models for Stationary Max-Stable Random Fields , 2002 .

[8]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[9]  S. Coles,et al.  Inference for Stereological Extremes , 2007 .

[10]  Richard L. Smith Maximum likelihood estimation in a class of nonregular cases , 1985 .

[11]  N. U. Prabhu,et al.  Statistical inference in stochastic processes , 1988 .

[12]  L. de Haan,et al.  A Spectral Representation for Max-stable Processes , 1984 .

[13]  J. Kent Information gain and a general measure of correlation , 1983 .

[14]  Jonathan A. Tawn,et al.  A dependence measure for multivariate and spatial extreme values: Properties and inference , 2003 .

[15]  Wenxin Jiang,et al.  The Indirect Method: Inference Based on Intermediate Statistics—A Synthesis and Examples , 2004 .

[16]  A. Davison,et al.  Generalized additive modelling of sample extremes , 2005 .

[17]  Richard L. Smith,et al.  MAX-STABLE PROCESSES AND SPATIAL EXTREMES , 2005 .

[18]  Stuart G. Coles,et al.  Regional Modelling of Extreme Storms Via Max‐Stable Processes , 1993 .

[19]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[20]  Stuart Coles,et al.  Directional Modelling of Extreme Wind Speeds , 1994 .

[21]  D. Cox,et al.  A note on pseudolikelihood constructed from marginal densities , 2004 .

[22]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[23]  T. Yee,et al.  Vector generalized linear and additive extreme value models , 2007 .

[24]  M. Wand,et al.  Geoadditive models , 2003 .

[25]  Richard E. Chandler,et al.  Inference for clustered data using the independence loglikelihood , 2007 .

[26]  V. P. Godambe An Optimum Property of Regular Maximum Likelihood Estimation , 1960 .

[27]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[28]  A User’s Guide to the SpatialExtremes Package , 2009 .

[29]  David J. Nott,et al.  Pairwise likelihood methods for inference in image models , 1999 .

[30]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[31]  Chi-Hyuck Jun,et al.  Average outgoing quality of CSP-C continuous sampling plan under short run production processes , 2006 .

[32]  Laurens de Haan,et al.  Spatial extremes: Models for the stationary case , 2006 .

[33]  Richard L. Smith,et al.  Models for exceedances over high thresholds , 1990 .

[34]  C. Varin,et al.  A note on composite likelihood inference and model selection , 2005 .

[35]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[36]  Jonathan A. Tawn,et al.  Modelling extremes of the areal rainfall process. , 1996 .

[37]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[38]  C. G. Broyden Quasi-Newton methods and their application to function minimisation , 1967 .

[39]  N. Jewell,et al.  Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data , 1990 .

[40]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[41]  Mixed model-based additive models for sample extremes , 2008 .

[42]  L. de Haan,et al.  Stationary min-stable stochastic processes , 1986 .

[43]  A. Jenkinson The frequency distribution of the annual maximum (or minimum) values of meteorological elements , 1955 .