Do fiber-reinforced polymer composites provide environmentally benign alternatives? A life-cycle-assessment-based study

This article summarizes the energy savings and environmental impacts of using traditional and bio-based fiber-reinforced polymer composites in place of conventional metal-based structures in a range of applications. In addition to reviewing technical achievements in improving material properties, we quantify the environmental impacts of the materials over the complete product life cycle, from material production through use and end of life, using life-cycle assessment (LCA).

[1]  Vincenzo Piemonte,et al.  Life cycle assessment of polylactic acid and polyethylene terephthalate bottles for drinking water , 2011 .

[2]  F. Mantia,et al.  Green composites: A brief review , 2011 .

[3]  Martin Kumar Patel,et al.  To compost or not to compost: Carbon and energy footprints of biodegradable materials' waste treatment , 2011 .

[4]  Yelin Deng,et al.  Environmental Assessment of Printed Circuit Boards from Biobased Materials , 2011 .

[5]  Sujit Das Life cycle assessment of carbon fiber-reinforced polymer composites , 2011 .

[6]  Soraia Pimenta,et al.  Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook. , 2011, Waste management.

[7]  V. Cádiz,et al.  Synthesis and properties of boron-containing soybean oil based thermosetting copolymers , 2010 .

[8]  Ying Xia,et al.  Vegetable oil-based polymeric materials: synthesis, properties, and applications , 2010 .

[9]  Emma Strömberg,et al.  Environmental and resource aspects of sustainable biocomposites , 2010 .

[10]  Armando Caldeira-Pires,et al.  Environmental benefits of substituting talc by sugarcane bagasse fibers as reinforcement in polypropylene composites: Ecodesign and LCA as strategy for automotive components , 2010 .

[11]  Sara González-García,et al.  Life cycle assessment of raw materials for non-wood pulp mills: Hemp and flax , 2010 .

[12]  Steve Davies,et al.  ORIGINAL RESEARCH: The eco-profile for current Ingeo® polylactide production , 2010 .

[13]  M. K. Yakubu,et al.  Biodegradation of flax fiber reinforced poly lactic acid , 2010 .

[14]  Yong-Ki Kim,et al.  Assessing environmentally friendly recycling methods for composite bodies of railway rolling stock using life-cycle analysis , 2010 .

[15]  Lin Li,et al.  Thermal processing of starch-based polymers , 2009 .

[16]  Ignace Verpoest,et al.  Lightweight materials for the automotive: environmental impact analysis of the use of composites , 2009 .

[17]  J. D. Melo,et al.  Mechanical and Microstructural Evaluation of Polymer Matrix Composites Filled with Recycled Industrial Waste , 2009 .

[18]  T. Gutowski,et al.  Life cycle energy analysis of fiber-reinforced composites , 2009 .

[19]  Jinglan Hong,et al.  Integrating life cycle costs and environmental impacts of composite rail car-bodies for a Korean train , 2009 .

[20]  Paul Compston,et al.  Life cycle assessment of Australian automotive door skins , 2009 .

[21]  Peter J. Halley,et al.  Biocomposites based on plasticized starch , 2009 .

[22]  M. Misra,et al.  Natural, Fibers, Biopolymers and Biocomposites , 2009 .

[23]  P. Czub Synthesis of high-molecular-weight epoxy resins from modified natural oils and Bisphenol A or BisphenolA-based epoxy resins , 2009 .

[24]  Yongshang Lu,et al.  Novel polymeric materials from vegetable oils and vinyl monomers: preparation, properties, and applications. , 2009, ChemSusChem.

[25]  K. Schulte,et al.  CFRP-Recycling Following a Pyrolysis Route: Process Optimization and Potentials , 2009 .

[26]  Kurt Buxmann,et al.  Analysis of greenhouse gas emissions related to aluminium transport applications , 2009 .

[27]  A. Mouritz,et al.  Sustainable design and environmental impact of materials in sports products , 2009 .

[28]  Patit Paban Kundu,et al.  Condensation polymers from natural oils , 2008 .

[29]  M. Errico,et al.  Recycling of polypropylene-based eco-composites , 2008 .

[30]  P. Davies,et al.  Effect of recycling on mechanical behaviour of biocompostable flax/poly(L-lactide) composites , 2008 .

[31]  Martin K. Patel,et al.  Life Cycle Assessment of Polysaccharide Materials: A Review , 2008 .

[32]  Chris D. Rudd,et al.  Surface characterisation of carbon fibre recycled using fluidised bed , 2008 .

[33]  Maya Jacob John,et al.  Biofibres and Biocomposites , 2008 .

[34]  E. Rudnik,et al.  Ecotoxicity of biocomposites based on renewable feedstock - preliminary studies. , 2007, Chemosphere.

[35]  R. Anandjiwala,et al.  Composites from Bast Fibres-Prospects and Potential in the Changing Market Environment , 2007 .

[36]  Shelie A. Miller,et al.  Environmental trade-offs of biobased production. , 2007, Environmental science & technology.

[37]  Martin K. Patel,et al.  Comparative life cycle studies on poly(3-hydroxybutyrate)-based composites as potential replacement for conventional petrochemical plastics. , 2007, Biomacromolecules.

[38]  C. Baley,et al.  Investigations on the recycling of hemp and sisal fibre reinforced polypropylene composites , 2007 .

[39]  Enrico Mangino,et al.  The future use of structural composite materials in the automotive industry , 2007 .

[40]  L.J. Lee,et al.  Life Cycle Energy Analysis and Environmental Life Cycle Assessment of Carbon Nanofibers Production , 2007, Proceedings of the 2007 IEEE International Symposium on Electronics and the Environment.

[41]  Jim Holbery,et al.  Natural-fiber-reinforced polymer composites in automotive applications , 2006 .

[42]  Stephen Pickering,et al.  Recycling technologies for thermoset composite materials—current status , 2006 .

[43]  Long Yu,et al.  Polymer blends and composites from renewable resources , 2006 .

[44]  Seung-Hwan Lee,et al.  Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites , 2006 .

[45]  J Gañan,et al.  Determination of the energy potential of gases produced in the pyrolysis processes of the vegetal carbon manufacture industry. , 2006, Bioresource technology.

[46]  M. Huijbregts,et al.  Is cumulative fossil energy demand a useful indicator for the environmental performance of products? , 2006, Environmental science & technology.

[47]  Constantinos Soutis Carbon fiber reinforced plastics in aircraft construction , 2005 .

[48]  Feng-kui Li,et al.  Novel thermosets prepared by cationic copolymerization of various vegetable oils- : synthesis and their structure-property relationships , 2005 .

[49]  Seungdo Kim,et al.  Life Cycle Assessment Study of Biopolymers (Polyhydroxyalkanoates) - Derived from No-Tilled Corn (11 pp) , 2005 .

[50]  R. Derosa,et al.  Current State of Recycling Sheet Molding Compounds and Related Materials , 2005 .

[51]  Ken Tsuda,et al.  Chemical recycling of glass fiber reinforced epoxy resin cured with amine using nitric acid , 2005 .

[52]  Alexei Vazquez,et al.  Degradation of polycaprolactone/starch blends and composites with sisal fibre , 2004 .

[53]  Chris D. Rudd,et al.  Microwave heating as a means for carbon fibre recovery from polymer composites: a technical feasibility study , 2004 .

[54]  Amory B. Lovins,et al.  Hypercars, hydrogen, and the automotive transition , 2004 .

[55]  S. Joshi,et al.  Are natural fiber composites environmentally superior to glass fiber reinforced composites , 2004 .

[56]  P. Degée,et al.  Biodegradation of poly(epsilon-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer. , 2003, Carbohydrate research.

[57]  W. B. Pedersen,et al.  Biodegradable composites based on l-polylactide and jute fibres , 2003 .

[58]  M. Sain,et al.  Sheet-Molded Polyolefin Natural Fiber Composites for Automotive Applications , 2003 .

[59]  Martin Kumar Patel,et al.  Cumulative energy demand (CED) and cumulative CO2 emissions for products of the organic chemical industry , 2003 .

[60]  A. Cunliffe,et al.  Pyrolysis of composite plastic waste , 2003, Environmental technology.

[61]  George Marsh,et al.  Next step for automotive materials , 2003 .

[62]  Anil N. Netravali,et al.  Composites get greener , 2003 .

[63]  S. Tsai,et al.  Composite Materials: Design and Applications , 2002 .

[64]  J. Seppälä,et al.  Biodegradation of lactic acid based polymers under controlled composting conditions and evaluation of the ecotoxicological impact. , 2002, Biomacromolecules.

[65]  S. M. Schexnayder,et al.  Environmental Evaluation of New Generation Vehicles and Vehicle Components , 2002 .

[66]  O. Jolliet,et al.  Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics , 2001 .

[67]  P. Wambua,et al.  Natural fibres: can they replace glass in fibre reinforced plastics? , 2001 .

[68]  M. Itävaara,et al.  Ecotoxicity tests for compost applications. , 2001, Ecotoxicology and environmental safety.

[69]  Sujit Das,et al.  THE COST OF AUTOMOTIVE POLYMER COMPOSITES: A REVIEW AND ASSESSMENT OF DOE'S LIGHTWEIGHT MATERIALS COMPOSITES RESEARCH , 2001 .

[70]  M. Misra,et al.  Biofibres, biodegradable polymers and biocomposites: An overview , 2000 .

[71]  K. Wötzel,et al.  Life cycle studies on hemp fibre reinforced components and ABS for automotive parts , 1999 .

[72]  Joachim Diener,et al.  Ökologischer Vergleich von NMT‐ und GMT‐Bauteilen , 1999 .

[73]  Junichi Kasai,et al.  Life cycle assessment, evaluation method for sustainable development , 1999 .

[74]  T. Gerngross,et al.  Can biotechnology move us toward a sustainable society? , 1999, Nature Biotechnology.

[75]  B. Dahlke,et al.  Natural Fiber Reinforced Foams Based on Renewable Resources for Automotive Interior Applications , 1998 .

[76]  J. Batchelor,et al.  Use of fibre reinforced composites in modern railway vehicles , 1981 .

[77]  Constantinos Soutis,et al.  Potential emissions savings of lightweight composite aircraft components evaluated through life cycle assessment , 2011 .

[78]  V. Cádiz,et al.  Vegetable oils as platform chemicals for polymer synthesis , 2011 .

[79]  Jakob Kuttenkeuler,et al.  On structural design of energy efficient small high-speed craft , 2011 .

[80]  T. Peijs,et al.  Biodegradable composites based on flax/polyhydroxybutyrate and its copolymer with hydroxyvalerate , 2010 .

[81]  V. Cádiz,et al.  Vegetable oil-based thermosetting polymers. , 2010 .

[82]  Ignace Verpoest,et al.  Environmental impact analysis of composite use in car manufacturing , 2009 .

[83]  Donald E. Malen,et al.  Preliminary Vehicle Mass Estimation Using Empirical Subsystem Influence Coefficients , 2007 .

[84]  Anna Hedlund-Åström,et al.  Model for End of Life Treatment of Polymer Composite Materials , 2005 .

[85]  H. Seliger,et al.  Biodegradable copolymers based on bacterial Poly((R)-3-hydroxybutyrate): thermal and mechanical properties and biodegradation behaviour , 2004 .

[86]  Jan E. G. van Dam,et al.  The environmental impact of fibre crops in industrial applications , 2004 .

[87]  Minoru Akiyama,et al.  Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation , 2003 .

[88]  G. Christie,et al.  Biodegradation and ecotoxicity evaluation of a bionolle and starch blend and its degradation products in compost , 2003 .

[89]  Paul Kiekens,et al.  Biopolymers: overview of several properties and consequences on their applications. , 2002 .

[90]  Yves Leterrier,et al.  2.33 – Life Cycle Engineering of Composites , 2000 .

[91]  Anthony Kelly,et al.  Comprehensive composite materials , 1999 .

[92]  W. Haije,et al.  COMPARATIVE ENVIRONMENTAL LIFE CYCLE ASSESSMENT OF COMPOSITE MATERIALS , 1997 .

[93]  Unfccc Kyoto Protocol to the United Nations Framework Convention on Climate Change , 1997 .

[94]  Jeva Symposium proceedings : EVS-13 : the 13th International Electric Vehicle Symposium, October 13-16, 1996 Osaka,Japan , 1996 .

[95]  George Tchobanoglous,et al.  Integrated Solid Waste Management: Engineering Principles and Management Issues , 1993 .

[96]  Donald V. Rosato,et al.  Reinforced Plastics/Composites , 1990 .