Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk

L. Wain | M. Obeidat | Y. Bossé | M. Tobin | L. Kiemeney | Hongbing Shen | D. Nickle | S. Lam | A. Tardón | S. Chanock | W. Bush | K. Overvad | C. Haiman | L. Marchand | A. Cox | G. Rennert | Xifeng Wu | C. Amos | L. Le Marchand | I. Gorlov | R. Houlston | O. Melander | L. Wilkens | Zhibin Hu | Jian-Min Yuan | W. Koh | D. Christiani | P. Brennan | S. Bojesen | J. Lissowska | P. Bakke | R. Tyndale | A. Trichopoulou | Y. Ye | A. Andrew | M. Schabath | M. Tsao | F. Shepherd | A. Risch | Wei-Qi Wei | J. Gui | H. Bickeböller | O. Gorlova | T. Muley | M. Aldrich | A. Pesatori | P. Bertazzi | L. Su | M. Johansson | V. Stevens | R. Tumino | Geoffrey Liu | E. Duell | D. Zaridze | V. Janout | A. Mukeria | I. Holcatova | R. Hung | Ruyang Zhang | J. Dai | M. Teare | S. Zienolddiny | V. Skaug | A. Haugen | H. Brunnström | Y. Brhane | J. Doherty | B. Zhu | P. Woll | M. Lamontagne | S. Ognjanovic | G. Goodman | L. Butler | E. Haura | J. McLaughlin | Yun-Chul Hong | W. Timens | M. Landi | K. Grankvist | N. Caporaso | R. Carreras-Torres | G. Scelo | Xiangjun Xiao | Younghun Han | N. Leighl | Chu Chen | J. Byun | M. De Biasi | J. Field | I. Brüske | M. Marcus | Yafang Li | Xuemei Ji | D. Muller | J. Manjer | P. Lazarus | A. Rosenberger | W. Saliba | S. Arnold | M. Davies | E. H. van der Heijden | B. Świątkowska | D. Qian | Dakai Zhu | Judith Manz | J. H. Kim | Xuchen Zong | T. Orlowski | P. Joubert | G. Fernández-Tardón | Fiona G. Taylor | A. Fernández-Somoano | C. Bolca | M. Kontić | D. Albanes | A. Mellemgaard | N. Diao | Mikael Johansson | Ahsan Kamal | Erik H. F. M. Heijden | J. S. Johansen | J. Mckay | L. Song | M. Artigas | Fangyi Gu | Yu-Tang Gao | Walid Saliba | Christopher I. Amos | L. Su | P. Brennan | Y. Ye | Fiona G. Taylor | Gad Rennert | William S. Bush | Mariella De Biasi | Jennifer A. Doherty | J. McLaughlin | M. Davies

[1]  Jin Hee Kim,et al.  Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes , 2017, Nature Genetics.

[2]  Gang Chen,et al.  Implication of downregulation and prospective pathway signaling of microRNA-375 in lung squamous cell carcinoma. , 2017, Pathology, research and practice.

[3]  Marcus R. Munafò,et al.  The CHRNA5–A3–B4 Gene Cluster and Smoking: From Discovery to Therapeutics , 2016, Trends in Neurosciences.

[4]  J. Hokanson,et al.  Hemizygous Deletion on Chromosome 3p26.1 Is Associated with Heavy Smoking among African American Subjects in the COPDGene Study , 2016, PloS one.

[5]  Shaohua Li,et al.  CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.) , 2016, Scientific Reports.

[6]  J. Gebert,et al.  Reconstitution of TGFBR2 in HCT116 colorectal cancer cells causes increased LFNG expression and enhanced N-acetyl-d-glucosamine incorporation into Notch1. , 2016, Cellular signalling.

[7]  D. Lötsch,et al.  Acquired nintedanib resistance in FGFR1-driven small cell lung cancer: role of endothelin-A receptor-activated ABCB1 expression , 2016, Oncotarget.

[8]  M. Herbert,et al.  Pathway Network Analyses for Autism Reveal Multisystem Involvement, Major Overlaps with Other Diseases and Convergence upon MAPK and Calcium Signaling , 2016, PloS one.

[9]  C. Amos,et al.  The role of haplotype in 15q25.1 locus in lung cancer risk: results of scanning chromosome 15. , 2015, Carcinogenesis.

[10]  N. Déliot,et al.  Plasma membrane calcium channels in cancer: Alterations and consequences for cell proliferation and migration. , 2015, Biochimica et biophysica acta.

[11]  Liudi Yuan,et al.  High Throughput Sequencing Identifies MicroRNAs Mediating α-Synuclein Toxicity by Targeting Neuroactive-Ligand Receptor Interaction Pathway in Early Stage of Drosophila Parkinson's Disease Model , 2015, PloS one.

[12]  Takeshi Nagayasu,et al.  Germline mutations causing familial lung cancer , 2015, Journal of Human Genetics.

[13]  A. Cheung,et al.  PTPRG suppresses tumor growth and invasion via inhibition of Akt signaling in nasopharyngeal carcinoma , 2015, Oncotarget.

[14]  Tamara S. Roman,et al.  New genetic loci link adipose and insulin biology to body fat distribution , 2014, Nature.

[15]  Y. Bossé,et al.  Susceptibility loci for lung cancer are associated with mRNA levels of nearby genes in the lung. , 2014, Carcinogenesis.

[16]  N. Rahman,et al.  Pathway-based analysis of GWAs data identifies association of sex determination genes with susceptibility to testicular germ cell tumors. , 2014, Human molecular genetics.

[17]  T. Beaty,et al.  Integrated genome-wide association, coexpression network, and expression single nucleotide polymorphism analysis identifies novel pathway in allergic rhinitis , 2014, BMC Medical Genomics.

[18]  Ayellet V. Segrè,et al.  Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease , 2014, PLoS genetics.

[19]  William Wheeler,et al.  Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer , 2014, Nature Genetics.

[20]  Miles Parkes,et al.  Genetic insights into common pathways and complex relationships among immune-mediated diseases , 2013, Nature Reviews Genetics.

[21]  David N. Rider,et al.  Genome-wide gene-set analysis for identification of pathways associated with alcohol dependence. , 2013, The international journal of neuropsychopharmacology.

[22]  N. Prevarskaya,et al.  Targeting Ca2+ transport in cancer: close reality or long perspective? , 2013, Expert opinion on therapeutic targets.

[23]  L. Bierut,et al.  Fine-mapping of the 5p15.33, 6p22.1-p21.31, and 15q25.1 Regions Identifies Functional and Histology-Specific Lung Cancer Susceptibility Loci in African-Americans , 2012, Cancer Epidemiology, Biomarkers & Prevention.

[24]  M. Wang,et al.  Bioinformatics analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes. , 2012, European review for medical and pharmacological sciences.

[25]  Ugo Pastorino,et al.  Association of lung adenocarcinoma clinical stage with gene expression pattern in noninvolved lung tissue , 2012, International journal of cancer.

[26]  Y. Bossé,et al.  Molecular signature of smoking in human lung tissues. , 2012, Cancer research.

[27]  R. Lukas,et al.  Function of Human α3β4α5 Nicotinic Acetylcholine Receptors Is Reduced by the α5(D398N) Variant* , 2012, The Journal of Biological Chemistry.

[28]  Sangsoo Kim,et al.  Performance Comparison of Two Gene Set Analysis Methods for Genome-wide Association Study Results: GSA-SNP vs i-GSEA4GWAS , 2012, Genomics & informatics.

[29]  Ming D. Li,et al.  Smoking and Genetic Risk Variation Across Populations of European, Asian, and African American Ancestry—A Meta‐Analysis of Chromosome 15q25 , 2012, Genetic epidemiology.

[30]  Tomoya Yamaguchi,et al.  NKX2-1/TITF1/TTF-1-Induced ROR1 is required to sustain EGFR survival signaling in lung adenocarcinoma. , 2012, Cancer cell.

[31]  Daniel E. Adkins,et al.  SNP-based analysis of neuroactive ligand–receptor interaction pathways implicates PGE2 as a novel mediator of antipsychotic treatment response: Data from the CATIE study , 2012, Schizophrenia Research.

[32]  R. Scott,et al.  Smoking Related Cancers and Loci at Chromosomes 15q25, 5p15, 6p22.1 and 6p21.33 in the Polish Population , 2011, PloS one.

[33]  A. Arcangeli,et al.  American Journal of Physiology-Cell Physiology theme: ion channels and transporters in cancer. , 2011, American journal of physiology. Cell physiology.

[34]  A. Jemal,et al.  Cancer statistics, 2011 , 2011, CA: a cancer journal for clinicians.

[35]  F. Davis,et al.  Ion channels and transporters in cancer. 4. Remodeling of Ca(2+) signaling in tumorigenesis: role of Ca(2+) transport. , 2011, American journal of physiology. Cell physiology.

[36]  L. Trusolino,et al.  ROR1 is a pseudokinase that is crucial for MET-driven tumorigenesis , 2011, BMC Proceedings.

[37]  G. Mills,et al.  Nicotinic acetylcholine receptor region on chromosome 15q25 and lung cancer risk among African Americans: a case-control study. , 2010, Journal of the National Cancer Institute.

[38]  Paul Brennan,et al.  Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium. , 2010, Journal of the National Cancer Institute.

[39]  Sangsoo Kim,et al.  GSA-SNP: a general approach for gene set analysis of polymorphisms , 2010, Nucleic Acids Res..

[40]  Erin Mundt,et al.  Genetics of Hirschsprung disease and anorectal malformations. , 2010, Seminars in pediatric surgery.

[41]  Tariq Ahmad,et al.  Meta-analysis and imputation refines the association of 15q25 with smoking quantity , 2010, Nature Genetics.

[42]  Ming D. Li,et al.  Genome-wide meta-analyses identify multiple loci associated with smoking behavior , 2010, Nature Genetics.

[43]  Suhua Chang,et al.  i-GSEA4GWAS: a web server for identification of pathways/gene sets associated with traits by applying an improved gene set enrichment analysis to genome-wide association study , 2010, Nucleic Acids Res..

[44]  Z. Herceg,et al.  Aberrant DNA methylation links cancer susceptibility locus 15q25.1 to apoptotic regulation and lung cancer. , 2010, Cancer research.

[45]  Elizabeth T. Cirulli,et al.  Common Genetic Variation and the Control of HIV-1 in Humans , 2009, PLoS genetics.

[46]  Ming D. Li,et al.  Association and Interaction Analyses of GABBR1 and GABBR2 with Nicotine Dependence in European- and African-American Populations , 2009, PloS one.

[47]  Wen Tan,et al.  Genetic variants on chromosome 15q25 associated with lung cancer risk in Chinese populations. , 2009, Cancer research.

[48]  John P. Rice,et al.  Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes , 2009, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[49]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[50]  Jun Yu,et al.  OPCML Is a Broad Tumor Suppressor for Multiple Carcinomas and Lymphomas with Frequently Epigenetic Inactivation , 2008, PloS one.

[51]  Mihaela Campan,et al.  Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer , 2008, Molecular Cancer.

[52]  S. Wacholder,et al.  Environment And Genetics in Lung cancer Etiology (EAGLE) study: An integrative population-based case-control study of lung cancer , 2008, BMC public health.

[53]  G. Mills,et al.  Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1 , 2008, Nature Genetics.

[54]  Daniel F. Gudbjartsson,et al.  A variant associated with nicotine dependence, lung cancer and peripheral arterial disease , 2008, Nature.

[55]  S. Heath,et al.  A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25 , 2008, Nature.

[56]  Kai Wang,et al.  Pathway-based approaches for analysis of genomewide association studies. , 2007, American journal of human genetics.

[57]  Beate Sick,et al.  Quality assessment of Affymetrix GeneChip data. , 2006, Omics : a journal of integrative biology.

[58]  Gene Ontology Consortium,et al.  The Gene Ontology (GO) project in 2006 , 2005, Nucleic Acids Res..

[59]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Prem Puri,et al.  Pathogenesis of Hirschsprung's disease and its variants: recent progress. , 2004, Seminars in pediatric surgery.

[61]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[62]  Ju-Han Lee,et al.  Genetic variants and risk of prostate cancer using pathway analysis of a genome-wide association study. , 2016, Neoplasma.

[63]  L. Tanoue Cancer Statistics, 2011: The Impact of Eliminating Socioeconomic and Racial Disparities on Premature Cancer Deaths , 2012 .

[64]  Daniel K. Putnam,et al.  Exploring schizophrenia drug-gene interactions through molecular network and pathway modeling. , 2011, AMIA ... Annual Symposium proceedings. AMIA Symposium.

[65]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[66]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[67]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[68]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.

[69]  J. Higginson International Agency for Research on Cancer. , 1968, WHO chronicle.

[70]  Leena Peltonen,et al.  Genome-wide association study of smoking initiation and current smoking. , 2009, American journal of human genetics.

[71]  The Gene Ontology ( GO ) project in 2006 Gene Ontology Consortium , 2022 .