Force-Controlled MEMS Rotary Microgripper

This paper presents a force-controlled microelectromechanical systems rotary microgripper with integrated electrothermal sensors. The proposed microgripper achieves a large displacement (85 μm) at low driving voltages (≤80 V). Closed-loop force control is implemented to ensure the safety of the operation where the controller gain is experimentally tuned so that the desired response is achieved. One of the main contributions of this work is the implementation of a null-displacement feedback control force-sensing technique, where the controller counteracts the input disturbance (contact force) and an integrated electrothermal displacement sensor provides a feedback signal to close the control loop. In this manner, the contact force is measured without moving the structure. Finally, the effectiveness of the controller and the performance of the proposed microgripper are verified by a set of experiments. The results demonstrate the satisfactory performance of the proposed force-controlled microgripper in a practical application.

[1]  Byungkyu Kim,et al.  Identification and control of a sensorized microgripper for micromanipulation , 2005, IEEE/ASME Transactions on Mechatronics.

[2]  R. Moheimani,et al.  Analysis of Nonlinear Phenomena in a Thermal Micro-Actuator With a Built-In Thermal Position Sensor , 2012, IEEE Sensors Journal.

[3]  Ren-Jung Chang,et al.  Vision-based compliant-joint polymer force sensor integrated with microgripper for measuring gripping force , 2009, 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[4]  S. O. Reza Moheimani,et al.  Displacement Measurement With a Self-Sensing MEMS Electrostatic Drive , 2014, Journal of Microelectromechanical Systems.

[5]  Silvestro Micera,et al.  Towards a force-controlled microgripper for assembling biomedical microdevices , 2000 .

[6]  Byung Kyu Kim,et al.  Institute of Physics Publishing Smart Materials and Structures a Superelastic Alloy Microgripper with Embedded Electromagnetic Actuators and Piezoelectric Force Sensors: a Numerical and Experimental Study , 2022 .

[7]  D. P. Potasek,et al.  Characterizing fruit fly flight behavior using a microforce sensor with a new comb-drive configuration , 2005, Journal of Microelectromechanical Systems.

[8]  I.A. Mahmood,et al.  Tracking Control of a Nanopositioner Using Complementary Sensors , 2009, IEEE Transactions on Nanotechnology.

[9]  S. O. Reza Moheimani,et al.  Zero displacement microelectromechanical force sensor using feedback control , 2014 .

[10]  Deok-Ho Kim,et al.  Dexterous teleoperation for micro parts handling based on haptic/visual interface , 2001, MHS2001. Proceedings of 2001 International Symposium on Micromechatronics and Human Science (Cat. No.01TH8583).

[11]  S. O. Reza Moheimani,et al.  MEMS Rotary Microgripper With Integrated Electrothermal Force Sensor , 2014, Journal of Microelectromechanical Systems.

[12]  Yu Sun,et al.  Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback , 2008 .

[13]  S. Moheimani,et al.  Simultaneous Capacitive and Electrothermal Position Sensing in a Micromachined Nanopositioner , 2011, IEEE Electron Device Letters.

[14]  S. O. Reza Moheimani,et al.  Sensor fusion for improved control of piezoelectric tube scanners , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[15]  N. Chronis,et al.  Electrothermally activated SU-8 microgripper for single cell manipulation in solution , 2005, Journal of Microelectromechanical Systems.

[16]  Lining Sun,et al.  Electrostatically driven microgripper integrated piezoresistive force sensor , 2008, 2008 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS.

[17]  J. H. Kyung,et al.  Design of a microgripper for micromanipulation of microcomponents using SMA wires and flexible hinges , 2008 .

[18]  Bradley J. Nelson,et al.  Microrobotic cell injection , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[19]  U.C. Wejinya,et al.  Closed-loop optimal control-enabled piezoelectric microforce sensors , 2006, IEEE/ASME Transactions on Mechatronics.

[20]  B. Nelson,et al.  Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field , 2007, Journal of Microelectromechanical Systems.

[21]  Micky Rakotondrabe,et al.  Development and Force/Position Control of a New Hybrid Thermo-Piezoelectric MicroGripper Dedicated to Micromanipulation Tasks , 2011, IEEE Transactions on Automation Science and Engineering.

[22]  Cheng-Hsien Liu,et al.  1×N rotary vertical micromirror for optical switching applications , 2005, SPIE MOEMS-MEMS.

[23]  Rana I. Shakoor,et al.  Design, modeling and simulation of electrothermally actuated Microgripper with integrated capacitive contact sensor , 2011, 2011 IEEE 14th International Multitopic Conference.

[24]  Q. Yang,et al.  A Monolithic Compliant Piezoelectric-Driven Microgripper: Design, Modeling, and Testing , 2013, IEEE/ASME Transactions on Mechatronics.

[25]  S. O. R. Moheimani,et al.  Feedback-Controlled MEMS Force Sensor for Characterization of Microcantilevers , 2015, Journal of Microelectromechanical Systems.

[26]  Hadi Mirzajani,et al.  A novel electrostatic based microgripper (cellgripper) integrated with contact sensor and equipped with vibrating system to release particles actively , 2014 .

[27]  J. Schweitz,et al.  The Design And Fabrication Of A Gripping Tool For Micromanipulation , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[28]  M. Kemper Development of a tactile low-cost microgripper with integrated force sensor , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[29]  Xinyu Liu,et al.  Micronewton force-controlled manipulation of biomaterials using a monolithic MEMS microgripper with two-axis force feedback , 2008, 2008 IEEE International Conference on Robotics and Automation.

[30]  S. O. R. Moheimani,et al.  Design and Analysis of Nonuniformly Shaped Heaters for Improved MEMS-Based Electrothermal Displacement Sensing , 2013, Journal of Microelectromechanical Systems.

[31]  Stephen F. Bart,et al.  An Integrated Force-balanced Capacitive Accelerometer For Low-G Applications , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[32]  Michael Kraft,et al.  A rotary comb-actuated microgripper with a large displacement range , 2014 .

[33]  S. O. Reza Moheimani,et al.  A Negative Imaginary Approach to Modeling and Control of a Collocated Structure , 2012, IEEE/ASME Transactions on Mechatronics.

[34]  Y Ansel,et al.  Development of tools for handling and assembling microcomponents , 2002 .

[35]  J. F. Creemer,et al.  Electrothermal microgripper with large jaw displacement and integrated force sensors , 2008, 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems.