Selective ion sensors based on ionophore-modified graphene field-effect transistors

[1]  S. Okamoto,et al.  Immunosensors Based on Graphene Field-Effect Transistors Fabricated Using Antigen-Binding Fragment , 2012 .

[2]  C. Pan,et al.  Monitoring extracellular K+ flux with a valinomycin-coated silicon nanowire field-effect transistor. , 2012, Biosensors & bioelectronics.

[3]  Y. Ohno,et al.  Highly Sensitive Electrical Detection of Sodium Ions Based on Graphene Field-Effect Transistors , 2011 .

[4]  Junhong Chen,et al.  Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor , 2011 .

[5]  Kenzo Maehashi,et al.  External-Noise-Induced Small-Signal Detection with Solution-Gated Carbon Nanotube Transistor , 2011 .

[6]  Yit‐Tsong Chen,et al.  Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation , 2011 .

[7]  Ashok Mulchandani,et al.  Single Conducting Polymer Nanowire Based Sequence‐Specific, Base‐Pair‐Length Dependant Label‐free DNA Sensor , 2011 .

[8]  A. Krasheninnikov,et al.  Structural defects in graphene. , 2011, ACS nano.

[9]  Y. Ohno,et al.  Chemical and biological sensing applications based on graphene field-effect transistors. , 2010, Biosensors & bioelectronics.

[10]  Y. Ohno,et al.  Label-free biosensors based on aptamer-modified graphene field-effect transistors. , 2010, Journal of the American Chemical Society.

[11]  Kang L. Wang,et al.  High-speed graphene transistors with a self-aligned nanowire gate , 2010, Nature.

[12]  Shun Mao,et al.  Specific Protein Detection Using Thermally Reduced Graphene Oxide Sheet Decorated with Gold Nanoparticle‐Antibody Conjugates , 2010, Advanced materials.

[13]  V. Varadan,et al.  Potassium Ion Sensing With Nanowire Electrodes on a Flexible Substrate for Early Detection of Myocardial Ischemia , 2010 .

[14]  Kenzo Maehashi,et al.  Label-Free Electrical Detection Using Carbon Nanotube-Based Biosensors , 2009, Sensors.

[15]  Kenzo Maehashi,et al.  Noise Reduction of Carbon Nanotube Field-Effect Transistor Biosensors by Alternating Current Measurement , 2009 .

[16]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[17]  K. Jenkins,et al.  Operation of graphene transistors at gigahertz frequencies. , 2008, Nano letters.

[18]  K. Shepard,et al.  Current saturation in zero-bandgap, top-gated graphene field-effect transistors. , 2008, Nature nanotechnology.

[19]  Kenzo Maehashi,et al.  Carbon Nanotube Amperometric Chips with Pneumatic Micropumps , 2008 .

[20]  Kenzo Maehashi,et al.  High-Performance Carbon Nanotube Field-Effect Transistors with Local Electrolyte Gates , 2008 .

[21]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[22]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[23]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[24]  Cees Dekker,et al.  Carbon nanotube biosensors: The critical role of the reference electrode , 2007 .

[25]  Yihong Wu,et al.  Graphene thickness determination using reflection and contrast spectroscopy. , 2007, Nano letters.

[26]  F. Beltram,et al.  The optical visibility of graphene: interference colors of ultrathin graphite on SiO(2). , 2007, Nano letters.

[27]  A. Neto,et al.  Making graphene visible , 2007, Applied Physics Letters.

[28]  E. Tamiya,et al.  Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. , 2007, Biosensors & bioelectronics.

[29]  Minhee Yun,et al.  Field-Effect Transistors Based on Single Nanowires of Conducting Polymers , 2007 .

[30]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[31]  Mark A. Reed,et al.  Label-free immunodetection with CMOS-compatible semiconducting nanowires , 2007, Nature.

[32]  Kenzo Maehashi,et al.  Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. , 2007, Analytical chemistry.

[33]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[34]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[35]  K. Ramanathan,et al.  Bioaffinity sensing using biologically functionalized conducting-polymer nanowire. , 2005, Journal of the American Chemical Society.

[36]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[37]  Ari Ivaska,et al.  Stability of the inner polyaniline solid contact layer in all-solid-state K+-selective electrodes based on plasticized poly(vinyl chloride). , 2004, Analytical chemistry.

[38]  Charles M. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[39]  B. Nilius,et al.  Ion channels and their functional role in vascular endothelium. , 2001, Physiological reviews.

[40]  J. Gutkind The Pathways Connecting G Protein-coupled Receptors to the Nucleus through Divergent Mitogen-activated Protein Kinase Cascades* , 1998, The Journal of Biological Chemistry.

[41]  E. Brekkan,et al.  Immobilized membrane vesicle or proteoliposome affinity chromatography. Frontal analysis of interactions of cytochalasin B and D-glucose with the human red cell glucose transporter. , 1996, Biochemistry.

[42]  L. Schild,et al.  Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits , 1994, Nature.

[43]  M. Esmann,et al.  The Na,K-ATPase , 1992, Journal of bioenergetics and biomembranes.

[44]  Yuji Miyahara,et al.  An integrated chemical sensor with multiple ion and gas sensors , 1990 .

[45]  R. Cobbold,et al.  Basic properties of the electrolyte—SiO2—Si system: Physical and theoretical aspects , 1979, IEEE Transactions on Electron Devices.

[46]  M. Rose,et al.  Stability of sodium and potassium complexes of valinomycin , 1974 .

[47]  G. Rechnitz,et al.  Mechanistic studies on the valinomycin-based potassium electrode , 1971 .

[48]  W. Simon,et al.  Highly Selective Potassium Ion Responsive Liquid-Membrane Electrode , 1969 .

[49]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[50]  B. Rossier,et al.  Structure-function relationship of Na,K-ATPase. , 1991, Annual review of physiology.

[51]  H. Shinohara,et al.  Enzyme microsensor for glucose with an electrochemically synthesized enzyme-polyaniline film , 1988 .