Supplementary Document : Spatial-spectral Encoded Compressive Hyperspectral Imaging

This paper proposes a novel compressive hyperspectral (HS) imaging approach that allows for high-resolution HS images to be captured in a single image. The proposed architecture comprises three key components: spatial-spectral encoded optical camera design, over-complete HS dictionary learning and sparse-constraint computational reconstruction. Our spatial-spectral encoded sampling scheme provides a higher degree of randomness in the measured projections than previous compressive HS imaging approaches; and a robust nonlinear sparse reconstruction method is employed to recover the HS images from the coded projection with higher performance. To exploit the sparsity constraint on the nature HS images for computational reconstruction, an over-complete HS dictionary is learned to represent the HS images in a sparser way than previous representations. We validate the proposed approach on both synthetic and real captured data, and show successful recovery of HS images for both indoor and outdoor scenes. In addition, we demonstrate other applications for the over-complete HS dictionary and sparse coding techniques, including 3D HS images compression and denoising.

[1]  Henry Arguello,et al.  Higher-order computational model for coded aperture spectral imaging. , 2013, Applied optics.

[2]  Wallace M. Porter,et al.  A System Overview Of The Airborne Visible/Infrared Imaging Spectrometer (Aviris) , 1987, Optics & Photonics.

[3]  Takahiro Okabe,et al.  Fast Spectral Reflectance Recovery Using DLP Projector , 2010, ACCV.

[4]  Bruce J. Tromberg,et al.  Face Recognition in Hyperspectral Images , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Hans-Peter Seidel,et al.  Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions , 2010, ACM Trans. Graph..

[6]  Stephen Lin,et al.  Acquisition of High Spatial and Spectral Resolution Video with a Hybrid Camera System , 2014, International Journal of Computer Vision.

[7]  David J. Brady,et al.  Multiframe image estimation for coded aperture snapshot spectral imagers. , 2010, Applied optics.

[8]  Min H. Kim,et al.  3D imaging spectroscopy for measuring hyperspectral patterns on solid objects , 2012, ACM Trans. Graph..

[9]  Shree K. Nayar,et al.  Generalized Mosaicing: Wide Field of View Multispectral Imaging , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  J. S. Dam,et al.  Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging. , 2000, Applied optics.

[11]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[12]  Nahum Gat,et al.  Imaging spectroscopy using tunable filters: a review , 2000, SPIE Defense + Commercial Sensing.

[13]  Alistair Gorman,et al.  Generalization of the Lyot filter and its application to snapshot spectral imaging. , 2010, Optics express.

[14]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[15]  Ayan Chakrabarti,et al.  Statistics of real-world hyperspectral images , 2011, CVPR 2011.

[16]  M E Gehm,et al.  Single-shot compressive spectral imaging with a dual-disperser architecture. , 2007, Optics express.

[17]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[18]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[19]  Qionghai Dai,et al.  Dual-coded compressive hyperspectral imaging. , 2014, Optics letters.

[20]  Robert W. Basedow,et al.  HYDICE system: implementation and performance , 1995, Defense, Security, and Sensing.

[21]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[22]  Daniel W. Wilson,et al.  Spatial-spectral modulating snapshot hyperspectral imager. , 2006, Applied optics.

[23]  Lawrence Carin,et al.  Coded Hyperspectral Imaging and Blind Compressive Sensing , 2013, SIAM J. Imaging Sci..

[24]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[25]  Brian A. Wandell,et al.  Spatio-spectral reconstruction of the multispectral datacube using sparse recovery , 2008, 2008 15th IEEE International Conference on Image Processing.

[26]  Xiaobai Sun,et al.  Video rate spectral imaging using a coded aperture snapshot spectral imager. , 2009, Optics express.

[27]  Liang Gao,et al.  Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy , 2010, Optics express.

[28]  Nahum Gat,et al.  Development of four-dimensional imaging spectrometers (4D-IS) , 2006, SPIE Optics + Photonics.

[29]  Hideaki Haneishi,et al.  High-fidelity video and still-image communication based on spectral information: natural vision system and its applications , 2006, Electronic Imaging.

[30]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[31]  Qionghai Dai,et al.  Supplementary Document : Spatial-spectral Encoded Compressive Hyperspectral Imaging , 2014 .

[32]  Shree K. Nayar,et al.  Video from a single coded exposure photograph using a learned over-complete dictionary , 2011, 2011 International Conference on Computer Vision.

[33]  Stephen Lin,et al.  A Prism-Mask System for Multispectral Video Acquisition. , 2011, IEEE transactions on pattern analysis and machine intelligence.

[34]  William L. Smith,et al.  Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft , 2001, SPIE Asia-Pacific Remote Sensing.

[35]  Adrian Stern,et al.  Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains. , 2013, Applied optics.

[36]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[37]  Shree K. Nayar,et al.  Ieee Transactions on Image Processing Computational Cameras: Convergence of Optics and Processing , 2022 .

[38]  Ramesh Raskar,et al.  Agile Spectrum Imaging: Programmable Wavelength Modulation for Cameras and Projectors , 2008, Comput. Graph. Forum.

[39]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[40]  Dennis W Prather,et al.  Development of a digital-micromirror-device-based multishot snapshot spectral imaging system. , 2011, Optics letters.

[41]  Takahiro Okabe,et al.  Fast Spectral Reflectance Recovery Using DLP Projector , 2010, International Journal of Computer Vision.

[42]  Hans-Peter Seidel,et al.  A reconfigurable camera add-on for high dynamic range, multispectral, polarization, and light-field imaging , 2013, ACM Trans. Graph..

[43]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[44]  Michael Elad,et al.  Optimized Projections for Compressed Sensing , 2007, IEEE Transactions on Signal Processing.

[45]  Qionghai Dai,et al.  Coded focal stack photography , 2013, IEEE International Conference on Computational Photography (ICCP).

[46]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[47]  Yasuyuki Matsushita,et al.  High-resolution hyperspectral imaging via matrix factorization , 2011, CVPR 2011.

[48]  Guillermo Sapiro,et al.  Learning to Sense Sparse Signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization , 2009, IEEE Transactions on Image Processing.

[49]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[50]  Gordon Wetzstein,et al.  Compressive light field photography using overcomplete dictionaries and optimized projections , 2013, ACM Trans. Graph..

[51]  Shree K. Nayar,et al.  Multispectral Imaging Using Multiplexed Illumination , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[52]  Moshe Ben-Ezra,et al.  Multi-Spectral Imaging by Optimized Wide Band Illumination , 2008, International Journal of Computer Vision.