High-resolution conservative algorithms for advection in incompressible flow

A class of high-resolution algorithms is developed for advection of a scalar quantity in a given incompressible flow field in one, two, or three space dimensions. Multidimensional transport is modeled using a wave-propagation approach in which the flux at each cell interface is built up on the basis of information propagating in the direction of this interface from neighboring cells. A high-resolution second-order method using slope limiters is quite easy to implement. For constant flow, a minor modification gives a third-order accurate method. These methods are stable for Courant numbers up to 1. Fortran implementations are available by anonymous ftp.

[1]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[2]  Endre Süli,et al.  Characteristic Galerkin Schemes for Scalar Conservation Laws in Two and Three Space Dimensions , 1997 .

[3]  Jeffrey S. Scroggs,et al.  A conservative semi‐Lagrangian method for multidimensional fluid dynamics applications , 1995 .

[4]  J. Saltzman,et al.  An unsplit 3D upwind method for hyperbolic conservation laws , 1994 .

[5]  Randall J. LeVeque Clawpack --- A Software Package For Solving Multi-Dimensional Conservation Laws , 1994 .

[6]  P. Smolarkiewicz,et al.  On Forward-in-Time Differencing for Fluids: Extension to a Curvilinear Framework , 1993 .

[7]  B. P. Leonard,et al.  Positivity-preserving numerical schemes for multidimensional advection , 1993 .

[8]  C. Schulz-Rinne,et al.  The Riemann problem for two-dimensional gas dynamics and new limiters for high-order schemes , 1993 .

[9]  R. Easter Two Modified Versions of Bott's Positive-Definite Numerical Advection Scheme , 1993 .

[10]  P. L. Roe,et al.  Optimum positive linear schemes for advection in two and three dimensions , 1992 .

[11]  A. Bott Monotone Flux Limitation in the Area-preserving Flux-form Advection Algorithm , 1992 .

[12]  T. E. Short,et al.  An exact peak capturing and Oscillation‐Free Scheme to solve advection‐dispersion transport equations , 1992 .

[13]  Piotr K. Smolarkiewicz,et al.  A class of monotone interpolation schemes , 1992 .

[14]  J. Bell,et al.  A Second-Order Projection Method for Variable- Density Flows* , 1992 .

[15]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[16]  Phillip Colella,et al.  An efficient second-order projection method for viscous incompressible flow , 1991 .

[17]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[18]  W. Grabowski,et al.  The multidimensional positive definite advection transport algorithm: nonoscillatory option , 1990 .

[19]  Randall J. LeVeque Hyperbolic conservation laws and numerical methods , 1990 .

[20]  R. LeVeque Numerical methods for conservation laws , 1990 .

[21]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[22]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[23]  Philip L. Roe,et al.  The use of the Riemann problem in finite difference schemes , 1989 .

[24]  B. P. Leonard Universal Limiter for Transient Interpolation Modeling of the Advective Transport Equations : The ULTIMATE Conservative Difference Scheme , 1988 .

[25]  G. R. Shubin,et al.  An unsplit, higher order Godunov method for scalar conservation laws in multiple dimensions , 1988 .

[26]  Lévêque,et al.  High resolution finite volume methods on arbitrary grids via wave propagation. Final report , 1988 .

[27]  K. Morton A comparison of flux limited difference methods and characteristic Galerkin methods for shock modelling , 1987 .

[28]  Richard B. Rood,et al.  Numerical advection algorithms and their role in atmospheric transport and chemistry models , 1987 .

[29]  P. Smolarkiewicz,et al.  The multidimensional positive definite advection transport algorithm: further development and applications , 1986 .

[30]  K. W. Morton,et al.  Generalised galerkin methods for hyperbolic problems , 1985 .

[31]  A. Fogelson A MATHEMATICAL MODEL AND NUMERICAL METHOD FOR STUDYING PLATELET ADHESION AND AGGREGATION DURING BLOOD CLOTTING , 1984 .

[32]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[33]  P. Smolarkiewicz A Fully Multidimensional Positive Definite Advection Transport Algorithm with Small Implicit Diffusion , 1984 .

[34]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[35]  P. Smolarkiewicz The Multi-Dimensional Crowley Advection Scheme , 1982 .

[36]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .

[37]  J. Dukowicz,et al.  Tensor viscosity method for convection in numerical fluid dynamics , 1979 .

[38]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[39]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[40]  B. Vanleer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[41]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[42]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[43]  A. Harten,et al.  Self-adjusting hybrid schemes for shock computations , 1972 .

[44]  R. Maccormack The Effect of Viscosity in Hypervelocity Impact Cratering , 1969 .

[45]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[46]  W. P. Crowley,et al.  NUMERICAL ADVECTION EXPERIMENTS1 , 1968 .

[47]  F. Harlow,et al.  THE MAC METHOD-A COMPUTING TECHNIQUE FOR SOLVING VISCOUS, INCOMPRESSIBLE, TRANSIENT FLUID-FLOW PROBLEMS INVOLVING FREE SURFACES , 1965 .

[48]  P. Lax,et al.  Difference schemes for hyperbolic equations with high order of accuracy , 1964 .

[49]  Philip L. Roe,et al.  Fluctuations and signals - a framework for numerical evolution problems. , 1800 .