Conflict-Aware Weighted Bipartite B-Matching and Its Application to E-Commerce

The weighted bipartite b-matching problem (WBM) plays a significant role in many real-world applications, including resource allocation, scheduling, Internet advertising, and E-commerce. WBM has been widely studied and efficient matching algorithms are well known. In this work, we study a novel variant of WBM, called conflict-aware WBM (CA-WBM), where conflict constraints are present between vertices of the bipartite graph. In CA-WBM, if two vertices (on the same side) are in conflict, they may not be included in the matching result simultaneously. We present a generalized formulation of CA-WBM in the context of E-commerce, where diverse matching results are often desired (e.g., movies of different genres and merchants selling products of different categories). While WBM is efficiently solvable in polynomial-time, we show that CA-WBM is NP-hard. We propose approximate and randomized algorithms to solve CA-WBM and show that they achieve close to optimal solutions via comprehensive experiments using synthetic datasets. We derive a theoretical bound on the approximation ratio of a greedy algorithm for CA-WBM and show that it is scalable on a large-scale real-world dataset.

[1]  Bala Kalyanasundaram,et al.  An optimal deterministic algorithm for online b-matching , 1996, Theor. Comput. Sci..

[2]  Dimitri P. Bertsekas,et al.  A new algorithm for the assignment problem , 1981, Math. Program..

[3]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[4]  Alex Thomo,et al.  Conflict-Aware Weighted Bipartite B-Matching and Its Application to E-Commerce , 2016, IEEE Trans. Knowl. Data Eng..

[5]  Sarit Kraus,et al.  Principles of Automated Negotiation , 2014 .

[6]  Jon Feldman,et al.  Online Stochastic Packing Applied to Display Ad Allocation , 2010, ESA.

[7]  Tony Jebara,et al.  Structure preserving embedding , 2009, ICML '09.

[8]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[9]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[10]  Gediminas Adomavicius,et al.  Maximizing Aggregate Recommendation Diversity: A Graph-Theoretic Approach , 2011, RecSys 2011.

[11]  ChengXiang Zhai,et al.  Constrained multi-aspect expertise matching for committee review assignment , 2009, CIKM.

[12]  Yefim Dinitz,et al.  Dinitz' Algorithm: The Original Version and Even's Version , 2006, Essays in Memory of Shimon Even.

[13]  Eduardo Alonso Fernández,et al.  Rules of encounter: designing conventions for automated negotiation among computers , 1995 .

[14]  Markus Zanker,et al.  Case-studies on exploiting explicit customer requirements in recommender systems , 2009, User Modeling and User-Adapted Interaction.

[15]  Aranyak Mehta,et al.  AdWords and Generalized On-line Matching , 2005, FOCS.

[16]  Zheng Liu,et al.  Ranking on heterogeneous manifolds for tag recommendation in social tagging services , 2015, Neurocomputing.

[17]  David R. Kaeli,et al.  Parallel maximum weight bipartite matching algorithms for scheduling in input-queued switches , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[18]  Hing-Fung Ting,et al.  Near Optimal Algorithms for Online Maximum Weighted b-Matching , 2014, FAW.

[19]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[20]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[21]  ChengXiang Zhai,et al.  Integer linear programming for Constrained Multi-Aspect Committee Review Assignment , 2012, Inf. Process. Manag..

[22]  Jacques L. Koko,et al.  The Art and Science of Negotiation , 2009 .

[23]  Frits C. R. Spieksma,et al.  Interval scheduling: A survey , 2007 .

[24]  Tony Jebara,et al.  Minimum Volume Embedding , 2007, AISTATS.

[25]  Chun Chen,et al.  Document recommendation in social tagging services , 2010, WWW '10.

[26]  Randeep Bhatia,et al.  Algorithmic Aspects of Bandwidth Trading , 2003, ICALP.

[27]  Tony Jebara,et al.  B-Matching for Spectral Clustering , 2006, ECML.

[28]  Martha Larson,et al.  Collaborative Filtering beyond the User-Item Matrix , 2014, ACM Comput. Surv..

[29]  Stéphane Pérennes,et al.  On the approximability of some degree-constrained subgraph problems , 2012, Discret. Appl. Math..

[30]  Jaap-Henk Hoepman,et al.  Simple Distributed Weighted Matchings , 2004, ArXiv.

[31]  Robert E. Tarjan,et al.  Amortized efficiency of list update and paging rules , 1985, CACM.

[32]  Aranyak Mehta,et al.  Online Matching and Ad Allocation , 2013, Found. Trends Theor. Comput. Sci..

[33]  Shih-Fu Chang,et al.  Graph construction and b-matching for semi-supervised learning , 2009, ICML '09.

[34]  Claire Mathieu,et al.  On-line bipartite matching made simple , 2008, SIGA.

[35]  Francesco M. Donini,et al.  DL-based Alternating-offers Protocol for Automated Multi-issue Bilateral Negotiation , 2007, Description Logics.

[36]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[37]  Richard M. Karp,et al.  An optimal algorithm for on-line bipartite matching , 1990, STOC '90.

[38]  Baruch Awerbuch,et al.  A Distributed Algorithm for Large-Scale Generalized Matching , 2013, Proc. VLDB Endow..

[39]  Laks V. S. Lakshmanan,et al.  Show Me the Money: Dynamic Recommendations for Revenue Maximization , 2014, Proc. VLDB Endow..

[40]  Julián Mestre,et al.  Greedy in Approximation Algorithms , 2006, ESA.

[41]  Ben Taskar,et al.  Learning structured prediction models: a large margin approach , 2005, ICML.

[42]  Alexander Felfernig,et al.  Constraint-based recommender systems: technologies and research issues , 2008, ICEC.

[43]  Bert Huang,et al.  Loopy Belief Propagation for Bipartite Maximum Weight b-Matching , 2007, AISTATS.

[44]  Laks V. S. Lakshmanan,et al.  Breaking out of the box of recommendations: from items to packages , 2010, RecSys '10.

[45]  Mihalis Yannakakis On a class of totally unimodular matrices , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[46]  Esther M. Arkin,et al.  Scheduling jobs with fixed start and end times , 1987, Discret. Appl. Math..

[47]  Mudhakar Srivatsa,et al.  Fine-Grained Knowledge Sharing in Collaborative Environments , 2015, IEEE Transactions on Knowledge and Data Engineering.

[48]  Francesco M. Donini,et al.  Logic-based automated multi-issue bilateral negotiation in peer-to-peer e-marketplaces , 2008, Autonomous Agents and Multi-Agent Systems.

[49]  Thomas P. Hayes,et al.  The adwords problem: online keyword matching with budgeted bidders under random permutations , 2009, EC '09.

[50]  Kenneth R. Rebman Total unimodularity and the transportation problem: a generalization , 1974 .

[51]  R. Häggkvist,et al.  Bipartite graphs and their applications , 1998 .

[52]  Geneva G. Belford,et al.  Multi-aspect expertise matching for review assignment , 2008, CIKM '08.

[53]  Michal Feldman,et al.  Efficient parking allocation as online bipartite matching with posted prices , 2013, AAMAS.

[54]  Nikhil R. Devanur,et al.  Randomized Primal-Dual analysis of RANKING for Online BiPartite Matching , 2013, SODA.

[55]  Bert Huang,et al.  Fast b-matching via Sufficient Selection Belief Propagation , 2011, AISTATS.

[56]  Yehuda Koren,et al.  Advances in Collaborative Filtering , 2011, Recommender Systems Handbook.

[57]  N. R. Jennings,et al.  To appear in: Int Journal of Group Decision and Negotiation GDN2000 Keynote Paper Automated Negotiation: Prospects, Methods and Challenges , 2022 .

[58]  Vijay V. Vazirani,et al.  An Optimal Algorithm for On-lineBipartite Matching , 2015 .

[59]  Markus Zanker,et al.  Preference reasoning with soft constraints in constraint-based recommender systems , 2010, Constraints.

[60]  Taghi M. Khoshgoftaar,et al.  A Survey of Collaborative Filtering Techniques , 2009, Adv. Artif. Intell..

[61]  Aditya G. Parameswaran,et al.  Recommendation systems with complex constraints: A course recommendation perspective , 2011, TOIS.

[62]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[63]  Rica Gonen,et al.  Negotiation-range mechanisms: exploring the limits of truthful efficient markets , 2004, EC '04.

[64]  Gediminas Adomavicius,et al.  Improving Aggregate Recommendation Diversity Using Ranking-Based Techniques , 2012, IEEE Transactions on Knowledge and Data Engineering.

[65]  Aristides Gionis,et al.  Social Content Matching in MapReduce , 2011, Proc. VLDB Endow..

[66]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[67]  Michael Stingl,et al.  On the solution of large-scale SDP problems by the modified barrier method using iterative solvers , 2009, Math. Program..

[68]  Hennadiy Leontyev,et al.  Partner tiering in display advertising , 2014, WSDM.