A luciferase based automated assay for rapid and sensitive detection of SARS-CoV-2 antibodies

[1]  Rui Qiao,et al.  Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages , 2022, Cell Host & Microbe.

[2]  H. Wei,et al.  Steep Decline in Binding Capability of SARS-CoV-2 Omicron Variant (B.1.1.529) RBD to the Antibodies in Early COVID-19 Convalescent Sera and Inactivated Vaccine Sera , 2022, Viruses.

[3]  S. Bernardini,et al.  Evaluation of serological anti-SARS-CoV-2 chemiluminescent immunoassays correlated to live virus neutralization test, for the detection of anti-RBD antibodies as a relevant alternative in COVID-19 large-scale neutralizing activity monitoring , 2021, Clinical Immunology.

[4]  Qiang Liu,et al.  Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost , 2021, Emerging microbes & infections.

[5]  Suresh Kumar,et al.  Omicron and Delta Variant of SARS-CoV-2: A Comparative Computational Study of Spike protein , 2021, bioRxiv.

[6]  Y. Matsuura,et al.  Correlation of the Commercial Anti-SARS-CoV-2 Receptor Binding Domain Antibody Test with the Chemiluminescent Reduction Neutralizing Test and Possible Detection of Antibodies to Emerging Variants , 2021, medRxiv.

[7]  X. Xie,et al.  Humoral immune response to circulating SARS-CoV-2 variants elicited by inactivated and RBD-subunit vaccines , 2021, Cell Research.

[8]  S. Grelli,et al.  Clinical validation of a second generation anti‐SARS‐CoV‐2 IgG and IgM automated chemiluminescent immunoassay , 2021, Journal of medical virology.

[9]  D. Qu,et al.  RBD-Fc-based COVID-19 vaccine candidate induces highly potent SARS-CoV-2 neutralizing antibody response , 2020, Signal Transduction and Targeted Therapy.

[10]  G. Rodger,et al.  Performance characteristics of five immunoassays for SARS-CoV-2: a head-to-head benchmark comparison , 2020, The Lancet Infectious Diseases.

[11]  J. Diallo,et al.  Implications for SARS-CoV-2 Vaccine Design: Fusion of Spike Glycoprotein Transmembrane Domain to Receptor-Binding Domain Induces Trimerization , 2020, Membranes.

[12]  A. Ghassempour,et al.  Mechanism of Antibodies Purification by Protein A. , 2020, Analytical biochemistry.

[13]  Adeel Afzal,et al.  Molecular diagnostic technologies for COVID-19: Limitations and challenges , 2020, Journal of Advanced Research.

[14]  Hakho Lee,et al.  Molecular and Immunological Diagnostic Tests of COVID-19: Current Status and Challenges , 2020, iScience.

[15]  M. Mochón,et al.  Comparison of commercial lateral flow immunoassays and ELISA for SARS-CoV-2 antibody detection , 2020, Journal of Clinical Virology.

[16]  A. Kouatchet,et al.  Assessment of SARS-CoV-2 serological tests for the diagnosis of COVID-19 through the evaluation of three immunoassays: Two automated immunoassays (Euroimmun and Abbott) and one rapid lateral flow immunoassay (NG Biotech) , 2020, Journal of Clinical Virology.

[17]  C. Bethel,et al.  Evaluation of the EUROIMMUN Anti-SARS-CoV-2 ELISA Assay for detection of IgA and IgG antibodies , 2020, bioRxiv.

[18]  C. Cunningham-Rundles,et al.  A serological assay to detect SARS-CoV-2 seroconversion in humans , 2020, Nature Medicine.

[19]  Linqi Zhang,et al.  Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor , 2020, Nature.

[20]  Philip L. Felgner,et al.  A serological assay to detect SARS-CoV-2 seroconversion in humans , 2020, medRxiv.

[21]  S. Markova,et al.  Coelenterazine-v ligated to Ca2+-triggered coelenterazine-binding protein is a stable and efficient substrate of the red-shifted mutant of Renilla muelleri luciferase , 2010, Analytical and bioanalytical chemistry.

[22]  R. Weissleder,et al.  Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. , 2005, Molecular therapy : the journal of the American Society of Gene Therapy.